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ABSTRACT: 
 
The most commonly used topographic vector data, the core data of a geographic information system (GIS), are currently two-
dimensional. The topographic objects are modelled as points, lines or areas with additional attributes containing different 
information about function and dimension of the object, possibly including height values. Height values may also be added to the 
objects by using a digital terrain model (DTM), i.e. by integrating vector data and DTM. In general, however, discrepancies exist 
between the two different data sets. These discrepancies are caused by different object modelling and different surveying and pro-
duction methods. In the vector data set, for example, a road is often modelled as a line or a polyline. The attributes contain 
information about the road width, the road type, etc. If the road is located on a dam, the corresponding part of the DTM can be 
modelled as an elongated, horizontal plane of some width with two slopes at the sides. Differences between the attribute road width 
of the vector data set, and the width of the horizontal plane in the DTM may cause discrepancies when integrating these data sets. 
Additionally, the data are often produced independently. The DTM may be generated using laser scanning or aerial photogrammetry. 
The topographic vector data may be based on digitized topographic maps or orthophotos resulting in differences in 2D location. 
As already mentioned, the topographic objects of the vector data are two-dimensional. But there exist various objects which contain 
implicit height information. A lake, for example, represents a horizontal plane, and all height values of the lakes’s area must be the 
same, the neighbouring banks, however, have to be higher than the water. To give another example, the slope of a road along and 
across the road direction must not exceed a certain maximum value. 
This paper describes an algorithm which uses this semantic information for a semantically correct integration of DTM and 2D 
topographic vector data. It is based on a inequality constrained least squares adjustment formulated as the linear complementary 
problem (LCP). The algorithm results in improved height values of the DTM. First investigations were carried out by using two 
different data sets representing two classes of objects. The first simulated data set represents a tilted plane, the second data set is a 
real data set of the German ATKIS®. First results using these data sets are satisfying. 
 
 

1. INTRODUCTION 

The most commonly used topographic vector data, the core data 
of a geographic information system (GIS), are currently two-
dimensional. The topographic objects are modelled as points, 
lines or areas with additional attributes which may contain 
different information on function and dimension of the object. 
In contrast a digital terrain model (DTM) in most cases is a 
2.5D representation of the earth’s surface. Each position in 
planimetry contains one height value. The points are distributed 
irregularly and/or in a grid, only points representing structure 
elements contain semantic meaning. They represent, for 
example, break lines or single significant height values. 
Integration of these two data sets may be understood in terms of 
an integrated data modelling for consideration of height 
information in a GIS. The 2D topographic objects are 
completed by height information of the DTM, and after the 
integration both data sets represent an integrated 2.5D 
topographic data set. 
There are different reasons for integration of the two data sets. 
First, data acquisition is mostly the main cost factor for 
generation of geographic information systems (Bill & Fritsch, 
1994). Integration of DTM or other specific data sets with 
respect to the geographical data base may reduce costs because 
there is no need for new data acquisition in 2.5 or 3D. 
Secondly, integration will result in consistent data sets. 
Inconsistencies are caused by different object modelling and 
different surveying and production methods. Vector data sets 

often contain roads modelled as lines or polylines. The 
attributes contain information on road width, road type etc. If 
the road is located on a dam, the corresponding part of the 
DTM can be modelled as an elongated, horizontal plane of 
some width with two slopes at its sides. Differences between 
the attribute road width of the vector data set, and the width of 
the horizontal plane in the DTM may cause discrepancies when 
integrating these data sets. Additionally, data are often 
produced independently. The DTM may be generated by using 
laser scanning or aerial photogrammetry. Topographic vector 
data may be based on digitized topographic maps or 
orthophotos. 
A third reason for the integration is verification of the DTM. In 
many cases topographic vector data are almost up to date 
because objects as streets and railways posses major priority in 
GIS. A DTM, however, may be older than one decade. It is true 
that height changes appear less frequently than changes in the 
horizontal position of objects. Nevertheless, integration of both 
data sets considering the semantic meaning of objects will show 
discrepancies, and will allow to draw conclusions on the quality 
of the DTM. 
This paper presents an algorithm for a semantically correct 
integration of a DTM and a 2D topographic vector data set. The 
following section describes the meaning of semantic 
correctness using some examples. Section 3 represents the 
algorithm and section 4 shows first results using simulated and 
real data sets. The paper concludes with a short summary and 
some future work. 



 
 

2. SEMANTIC CORRECTNESS 

There are several approaches for integration of a DTM and a 
topographic vector data set. Some methods are based on the use 
of height values as attribute, i.e. the Z-coordinate is linked to 
the object. In case of area based objects polynomial faces may 
be added. Other approaches use triangles or grids for the 
combination of topographic objects and DTM and for 
completion of the structure of a triangulated or gridded DTM, 
whereas the latter method locally densifies the gridded structure 
of the DTM by also using triangulations. An overview about 
existing methods is given by (Lenk, 2001). 
All these methods do not consider any semantic meaning of the 
topographic objects. For example, if a street crosses a ridge, the 
integration of a street into an existing triangulated DTM may 
cause an incorrect terrain morphology, if no additional point is 
added on the ridge, which will result in a terrain insection. Or, 
if a lake or a subset of a lake is situated on a slope, the water of 
a simulated standing water body flows. Figure 1 shows a DTM 
and a topographic data set with three lakes. The heights at the 
border of the lakes are not the same as inside the lakes, there is 
no constant height level, the semantics are incorrect. 
 
 

 

 
 

 
Figure 1: A visualization of a DTM (ATKIS® DGM5) and a 

topographic vector data set with three lakes  
(ATKIS® Basis-DLM) 

 
 
The topographic objects are two-dimensonal. Nevertheless, 
objects exist which contain implicit relative height information 
on the terrain. Table 1 shows some of these objects and their 
representation in the terrain. 
The table contains three object classes. The first class contains 
objects which represent horizontal planes. For example, sports 
fields (football or soccer fields) are mainly horizontal. 
Furthermore, runways or lakes represent almost horizontal 
planes, in addition, lakes have banks at their sides, and the 
terrain is ascending. 
The second class describes objects representing tilted planes. 
Street or roads represent tilted planes with some slope in 
driving direction and across. Perpendicular to the road direction 
the inclination of the street is necessary because of water 
drainage. Additionally, in curves the slope will reduce the 
forces which affect the vehicles. In topographic vector data sets 
streets and railways are mostly modelled by lines. Therefore, 
these objects have to be buffered using additional information 
on the width of the object when integrating them with a DTM. 
 

 
Representation Object 
Horizontal plane Sports field 

Race track 
Runway 

Dock 
Canal 

Lake, pool 
Tilted plane with 
maximum slopes 

Street, Road 
Path 

Railway, tramway 
River 

Height relation Bridge 
Undercrossing, crossover 

 
Table 1. Topographic objects and their representation in the 
terrain from the ATKIS® Basis-DLM feature catalogue 
 
 
The last class shown in table 1 describes objects which have a 
height relation to other objects. Bridges, undercrossings and 
crossovers may contain a certain relation to their neighbouring 
terrain. These relations mainly are components of the 2D vector 
data set. 
 
 

3. AN ALGORITHM FOR THE SEMANTICALLY 
CORRECT INTEGRATION 

A DTM is composed of regularly or irregularly distributed 
points with its coordinates X,Y,Z and an interpolation function 
to derive Z values at arbitrary positions X,Y. Additionally 
structure elements are included which contain information on 
the morphology of the terrain (break lines, significant points, 
etc.). 
The topographic vector data currently are two-dimensional. The 
topographic objects are modelled by points, lines or areas. In 
this paper the planimetric coordinates of the topographic 
objects will be introduced as error-free. Any kind of systematic 
or random errors will be neglected, i.e. errors of the 
interpolated height value caused by inaccurate planimetric 
coordinates of the vector data are not considered up to now. 
The aim of integrating both data sets is an integrated data 
modelling for considering height information in GIS. The data 
sets must be integrated in such a way that the topographic 
objects have to fulfill certain constraints which arise from the 
semantics of the objects. 
 
The first step of the algorithm is a constrained Delaunay 
triangulation of all points of the DTM (section 3.1.). Then, 
different objects containing implicit height information are 
introduced, and their heights are interpolated using the height 
values of the triangulated DTM. Equality and inequality 
constraints are then considered in an optimization process, 
resulting in improved height values and in integrated data sets 
which fulfill the predefined constraints. A precondition of the 
algorithm is that the terrain morphology in the neighbourhood 
of the objects has to be considered but the improvements of the 
heights have to be small. 
The objects are finally introduced as constraints in a new 
Delaunay triangulation, producing two consistent data sets. 
 
3.1. Constrained Delaunay triangulation 

The hybrid DTM will be triangulated using a constrained 
Delaunay triangulation. The structure elements are introduced 



 
 

as constraints, and the result is a triangulated irregular network 
(TIN). There are many Delaunay triangulation algorithms. In 
our approach the “divide and conquer” algorithm presented by 
Guibas and Stolfi, 1985, was used because it performs very 
well (Shewchuk, 1997). The structure elements were introduced 
in such a way that the points of the structure elements 
intersecting the edges of the triangles were added as new points 
of the triangulation. 
 
3.2. Equality and inequality constraints 

For the topographic objects which contain implicit height 
information (see table 1), equality and inequality constraints are 
formulated. Each class contained in table 1 has its own 
constraints, which will be derived in the following. 
 
Horizontal plane 
Height values of objects representing a horizontal plane must be 
identical, i.e. in case of area based objects the points with 
planimetric coordinates inside the object polygon must have the 
same Z-coordinate ZHP. In ideal cases the following equation 
must be fulfilled: 
 
 
  (1) HPi ZZ =
 
where i = 1,…,nins 
 nins Number of points with planimetric coordinates 

lying inside the polygon representing the object 
 ZHP Height value of the horizontal plane 
 
 
The height values of the object boundary polygon points must 
in general be interpolated from the neighbouring DTM heights. 
Again, these heights must have the same height level ZHP: 
 
 
 ( ) HPwvujjj ZZZZYXZ =,,,,  (2) ∆
 
 
Xj,Yj are the planimetric coordinates of an object boundary 
point, Zu,Zv,Zw are the height values of the triangle of the TIN 
which contains the planimetric coordinates of the object point. 
The height values Zj are computed using the equation of a tilted 
plane. 
 
The neighbouring terrain of the object outside the polygon also 
has to be considered in the algorithm. The first reason is that 
some of the objects have banks or slopes at their sides which 
have a certain value with respect to the horizontal plane. For 
example, the height values of a bank of a lake shore have to 
increase as otherwise the water would flow out. Secondly, the 
object is related to the neighbouring terrain: The further a DTM 
point lies away from an object, the smaller should be the 
influence of the object on the height change of these points. 
Figure 2 shows some points of a lake and its neighbouring 
terrain. The different colours of the points indicate the equality 
or inequality constraint which must be fulfilled after applying 
the algorithm. The gray and the dark blue points must have the 
same height values as they represent the water body. The Z-
coordinates of the orange points have to be higher than the 
height level of the lake. The orange points are all points outside 
the object polygon which belong to triangles of the TIN whose 
edges intersect the boundary polygon of the lake (for example 

point 214 intersects the boundary polygon, see the fat dark blue 
lines). The corresponding inequation is: 
 
 
  (3) HPk ZZ >
 
where k = 1,…,nobj 
 nobj Number of points of the topographic object 
 ZHP Height value of the horizontal plane 
 
 

 

 
 

 
Figure 2: DTM points and boundary polygon of a topographic 

object and the neighbouring terrain 
 
 
The green DTM points are all points outside the object polygon 
which are connected to orange DTM points of the bank. In 
figure 2, the DTM point 17 is connected to three orange points 
(214, 215, 216). The connections will be added by using the 
height differences between the points: 
 
 
 lkkl ZZZ −=  (4) 
 
 
Zk ist the height value of a DTM point of the bank, Zl is the 
corresponding height value of the green DTM points. These 
height differences lead to a terrain morphology which is nearly 
the same as before. 
 
Tilted plane 
The objects representing a tilted plane are mainly elongated 
objects (see table 1). Along the main direction these objects are 
not allowed to exceed a predefined slope value sMax: 
 
 

 Max
mn

nm s
D

ZZ
≤

−  (5) 

 
 
Additionally the slope difference dsMax between neighbouring 
object sections, comparable to the curvature of the object in 
longitudinal direction, is restricted: 
 
 

 Max
no

on

mn

nm ds
D

ZZ
D

ZZ
≤

−
−

−  (6) 



 
 

Dmn and Dno are the horizontal distances between the object 
boundary points Pm, Pn and Pn, Po, respectively. In case of 
objects which are modelled by lines, these points belong to the 
object polyline. 
The corresponding height values in perpendicular direction 
must have the same height level, because the slope of streets or 
railways will be neglected (equation 7). Objects modelled by 
lines have to be buffered using attributes representing the width 
of the object. Then, Zp represents the height value of the 
buffered left or right side and Zm is the height of the centre axis. 
 
 
  (7) mp ZZ =

 
 
Finally, the height values of points with their planimetric 
coordinates inside the object have to be situated on the tilted 
plane. The distance between the point Pq and the plane must be 
zero: 
 
 

 0=
−⋅

n

dqn
 (8) 

 
 
d is the distance of the plane to the origin of the coordinate 
system, n is the normal vector of the tilted plane and q contains 
the coordinates of the point Pq. 
Again the connection to the DTM points outside the object 
polygon will be introduced using the height differences 
between these points and points representing the object (see 
equation 4). 
 
Height relation 
Bridges, undercrossings and crossovers have a certain height 
relation to other objects (for example street, railway, river, 
etc.). The height values which belong to these objects must be 
higher or lower than the related objects: 
 
 

  (9) 
sr

sr

ZZ
ZZ

>
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3.3. Inequality constrained least squares adjustment 

The defined constraints (equations 1 to 9) have to be introduced 
in an optimization process. The algorithm used is based on an 
inequality constrained least squares adjustment which is 
formulated as the linear complementary problem (LCP). In the 
following the basic principle of the algorithm will be described, 
for details see Lawson & Hanson, 1995, Fritsch, 1985 and 
Schaffrin, 1981. 
 
The aim of a least squares adjustment is to minimize the square 
sum of the residuals v (L2 approximation): 
 
 

 
( ) ( ) MinlxAPlxA

MinvPv
T

T

→−−

⇔→
 (10.1) 

 
where v vector of residuals 
 P weight matrix 

 A Jacobean matrix of the partial derivations of the 
observation equations with respect to the 
unknown parameters x 

 x vector of unknown parameters 
 l vector of reduced observations 
 
 
The equality constraints 1, 2, 4, 7 and 8 can be used to derive 
observation equations of this adjustment procedure: 
 
 
  (1.1) iHPi ZZv −=+ ˆˆ0

 ( )wvujjjHPj ZZZYXZZv ,,,,ˆˆ0 −=+  (2.1) 

  (4.1) lkklkl ZZvZ ˆˆˆ −=+∆

  (7.1) mppm ZZv ˆˆˆ0 −=+

 
n

dqn
vdistance

−⋅
=+ ˆ0  (8.1) 

 
 
Here, a Gauss-Markoff adjustment model was used because the 
defined equality constraints are not strictly adhered to. The 
height values Ẑ  are the unknowns, the observations are 
pseudo-observations. By weighting them using the weight 
matrix P, the fulfilment of the constraints can be controlled. 
 
The heights of the green DTM points outside the object (see 
figure 2) are used to form an additional observation equation: 
 
 
  (11) lll ZZv −=+ ˆˆ0
 
 
If a height value has nearly to be unchanged, this observation 
gets a high weight. 
 
The adjustment procedure is completed by introducing the 
inequations 3, 5, 6 and 9 in the optimization process: 
 
 
  (3.1) kHP ZZ ˆˆ0 −>

 
mn

nm
Max D

ZZs
ˆˆ −

≥  (5.1) 

 
no

on

mn

nm
Max D

ZZ
D

ZZds
ˆˆˆˆ −

−
−

≥  (6.1) 

  (9.1) srsr ZZZZ ˆˆ     ,ˆˆ ><
 
 
These inequations form the following inequation system the 
unknown parameters also have to satisfy: 
 
 
 B x b⋅ ≤  (10.2) 
 
where B matrix of partial derivations of the inequations 

with respect to the unknown parameters x 
 b right side of the inequation system 
 



 
 

The LCP is formulated as follows: 
 
 
 ˆẑ M u k= ⋅ +  (12) 
 
where 
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The solution (12) is called a complementary solution, because 
the vectors ẑ  and u  are complementary to each other, i.e. the 
following complementary condition is fulfilled: 

ˆ
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u z
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The unknown parameter vector x of the initial least squares 
adjustment with inequality constraints (see 10) are computed 
using the result vector û  of equation 12: 
 
 

 ( ) ( )1
ˆ ˆT T Tx A P A B u A Pl

−
= − ⋅ −  (14) 

 
 
In our approach the Linear Complementary Problem is solved 
using the Lemke algorithm (Lemke, 1968). 
 
 

4. RESULTS 

The first results were determined by means of two different test 
data sets. The first data set is a simulated one and consists of a 
small DTM strip and an object representing a tilted plane. The 
second data set is the area from figure 1. The topographic 
vector data are objects of the German ATKIS® Basis-DLM. 
The data set consists of three lakes bordered by polygons with 
planimetric coordinates. The DTM, the ATKIS® DGM5, is a 
hyrid data set, containing regularly distributed points with a 
grid size of 12,5 m and structure elements. 
 
4.1. Tilted plane 

The simulated regular DTM consists of 6 rows and 31 columns 
with a grid size of 10 m. The heights were calculated using a 
sine function in X-direction (east-west) with an additional 
random correction. The object is a straight road with random X- 
and constant Y-coordinates, it consists of 54 points. The line 
has been buffered by using a road width of 4 m on the left and 4 
m on the right side of the centre axis. Figure 3 shows the 
triangulated DTM. 
 
In all computations the values sMax and dsMax of the inequality 
constraints were set to 0.06 and 0.05, respectively. The first 
investigations were done using the same weight for all 
observations, i.e. the matrix P from equation (10.1) is a unit 
matrix. 
Figure 4 shows the profile of the interpolated height values of 
the road before the algorithm was applied (gray line). The blue 

line represents the resulting profile after the integration of both 
data sets. 

 
Figure 3: TIN of the simulated data set 

 

The height range of the new profile is smaller than the height 
range of the original data, the mean height of the centre axis of 
the road presented in figure 4 is nearly the same as before. The 
defined constraints are fulfilled, all slope values are smaller 
than 0.05 and all curvature values are smaller than 0.06.  
 
 

 
Figure 4: East-west profile before and after the algorithm was 

applied 
 
 
Perpendicular to the driving direction of the road the height 
differences between points of the centre axis and the 
corresponding heights of the border are not zero, because the 
inequality constraints (inequation 5.1 and 6.1) refer to the 
centre axis. Using a higher weight for these kind of observation 
results in horizontal cross sections. 
A higher weight of the green DTM points and of the height 
differences between the green and the orange points outside the 
object results in increasing inclined cross sections. The road 
adjusts to the terrain, the improvements of the point heights 
outside the object become smaller. 
 
4.2. Horizontal plane 

The second example deals with ATKIS® data. The test data set 
consists of about 3400 DTM points, three lakes are represented 
by total of 300 planimetric coordinates. Figure 5 shows the 
DTM after the constrained Delaunay triangulation. The blue 
points are the interpolated height values of the topographic 
vector data set. Obviously, the blue points do not all have the 
same height level. Most of them are situated on the bank of the 
lakes. Thus, the interpolated heights are higher than the points 
inside the lakes. Additionally, the height values inside the 
object polygon also do not have the same height level. 
 
Again, the first investigations were carried out by using the 
same weight for all observations. The height values of the bank 
have to be at least 1 cm higher than the height level of the lakes 
(see inequation 3.1). 



 
 

The algorithm results in lake heights which are nearly identical 
to the mean values of all height values representing a lake. The 
inequality constraints are fulfilled. 
A higher weight for the green DTM points outside the lake 
(equation 11) and for the height differences between these 
points and the points of the bank (equation 4.1) results in lake 
heights which differ from the mean values. The terrain outside 

the objects is nearly the same as before. Only the height values 
which are to low were improved significantly. 
 
Figure 6 represents the TIN of the integrated data sets. The blue 
areas are the lakes: All height values inside the lake and on the 
bounding polygon of the lake are the same. 
 

 
 

 
 

 
 

 
Figure 5: Triangular irregular network (TIN) of the DTM, topographic vector data set with interpolated heights 

 
 

 

 
 

 
Figure 6: TIN of the integrated data sets, DTM and topographic vector data sets after applying the algorithm 

 



 
 

 
5. SUMMARY AND FUTURE WORK 

This paper presents the first results which have been derived 
using an algorithm for semantically correct integration of DTM 
and a topographic vector data set. Based on a constrained 
Delaunay triangulation the heights of the two-dimensional 
vector data set are calculated using the neighbouring heights of 
a triangular irregular network. Some of the objects of the 
topographic vector data contain implicit height information. For 
example, lakes describe a horizontal plane, roads or railways do 
not exceed maximum slope and curvature values. This 
information has been used to derive equality and inequality 
constraints. The algorithm is based on a inequality constrained 
least squares adjustment formulated as the linear 
complementary problem (LCP). The algorithm results in 
improved height values of the DTM. 
First investigations were carried out by using two different data 
sets: A simulated one representing a tilted plane and a real data 
set of the German ATKIS®. The constraints have been fulfilled 
but big differences between the constraints and the DTM may 
cause a non-realistic improvement of the original height 
information. Thus, blunders or big differences have to be 
analyzed in the algorithm in the future. 
Furthermore, the planimetric coordinates of the topographic 
vector data set were introduced as error-free. This may cause a 
reduced height level of the topographic object if the planimetric 
coordinates of the object representing a road on a dam are 
situated beneath the corresponding part of the DTM. Or, if the 
planimetric coordinates of the bounding polygon of a lake are 
situated on the banks, the lake height arises. That means, the 
accuracy of the planimetric coordinates of the topographic data 
have to be considered. 
In addition, planimetric coordinates of structure elements have 
to be considered in the adjustment process. Otherwise, structure 
elements inside area based objects will be deleted and the 
morphology can be erroneous. 
Nevertheless, the algorithm shows first satisfying results but 
further investigations have to be carry out. 
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