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ABSTRACT: 
 
This paper presents an approach for the homogenisation and integration of two-dimensional GIS vector data and 2,5D Digital Terrain 
Models (DTM). Due to inconsistencies between the data which are caused by different surveying and production methods, different 
modellings and large time shifts between acquiring the data, the data sets must be homogenised. The homogenisation considers the 
accuracy of the planimetric coordinates of the 2D GIS data as well as the accuracies of the heights of the DTM points. The aim of the 
homogenisation is to produce 2,5D objects represented in a semantically correct way, i.e. the objects have to correspond to our view. 
For instance, a locally restricted lake geometrically can be represented by a horizontal plane, i.e. the heights of all points inside the 
lake must be identical. To give another example, a road should not exceed maximum slope and curvature values in driving direction 
and across. These characterisations are formulated by equalities and inequalities and are introduced into an inequality constrained 
least squares adjustment which is solved using the linear complementary problem (LCP). In a further step an integration of the data is 
applied, which is based on a constrained Delaunay triangulation. The aim of the approach is the creation of an integrated data set 
containing objects with respect to the third dimension. 
 

1. INTRODUCTION 

1.1 Motivation 

Topographic vector data, the core data of a geographic 
information system (GIS), are currently two-dimensional. The 
topography is modelled by different objects which are 
represented by single points, lines and areas. In contrast, a 
digital terrain model (DTM) in most cases is a 2,5D 
representation of the earth’s surface. By integrating these data 
sets the dimension of the topographic objects is augmented. 
However, inconsistencies between the data may cause a 
semantically incorrect result of the integration process. 
Inconsistencies may be caused by different object modelling, 
different surveying and production methods and / or large time 
shifts between acquiring the data. For instance, vector data sets 
often contain roads modelled as lines or polylines. Attributes 
contain information on road width, road type etc. If the road is 
located on a slope, the corresponding part of the DTM often is 
not modelled correctly. When integrating these data sets, the 
slope perpendicular to the driving direction is identical to the 
slope of the DTM which does not correspond to the real slope 
of the road. Furthermore, data are often produced 
independently. The DTM may be generated by using lidar or 
aerial photogrammetry. Topographic vector data may be based 
on digitized topographic maps or orthophotos. These different 
methods may cause inconsistencies, too. An integration and a 
former homogenisation considering the semantics of the 
topographic objects lead to consistent data. 
The homogenised and integrated data set is useful for many 
applications. For instance, good visualisations of 2,5D or 3D 
models of the topography need correct data and are important 
for flood simulations and risk management. The approach can 
also be used to produce correct orthophotos in areas with non-
modelled bridges or other man-made objects within the DTM. 
Last, considering the semantics of objects it is also possible to 
verify the DTM. Mostly, topographic vector data are up-to-date 
because objects like roads and railways possess major priority 

in GIS. A DTM, however, may be more than ten years old. The 
approach will show discrepancies between the data and will 
allow to draw conclusions on the quality of both data sets. 
 
1.2 Related work 

This paper covers two different working fields: the 
homogenisation of geographic data and the integration of 
different data sources. The homogenisation includes the 
partition of differences between the data and the realisation of 
geometric constraints. Hettwer (2003) and Scholz (1992) have 
investigated the homogenisation of 2D cartographic data which 
possibly stem from different data sources and refer to different 
coordinate systems. Both use a least squares adjustment. Scholz 
solves the homogenisation using an equality constraint least 
squares adjustment. Geometric constraints are introduced by 
equalities. Hettwer introduces coordinates as direct 
observations, regularisation constraints are formulated using 
pseudo observations. The investigations are restricted to 2D 
data and no inequation constraints are introduced. 
The integration of a DTM and 2D GIS data is an issue that has 
been tackled for more than ten years. Weibel (1993), Fritsch & 
Pfannenstein (1992) and Fritsch (1991) establish different 
forms of DTM integration: In case of height attributing each 
point of the 2D GIS data set contains an attribute “point 
height”. By using interfaces it is possible to interact between 
the DTM program and the GIS system. Either the two systems 
are independent or DTM methods are introduced into the user 
interface of the GIS. The total integration or full database 
integration comprises a common data management within a 
data base. The terrain data often is stored in the data base in 
form of a triangular irregular network (TIN) whose vertices 
contain X,Y and Z coordinates. The DTM is not merged with 
the data of the GIS. The merging process, i.e. the introduction 
of the 2D geometry into the TIN, has been investigated later by 
several authors (Lenk, 2001; Klötzer, 1997). The approaches 
differ in the sequence of introducing the 2D geometry, the 
amount of change of the terrain morphology and the number of 
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points after the integration process. Nevertheless, all methods 
have in common that inconsistencies between the data are 
neglected and thus may lead to semantically incorrect results. 
Rousseaux & Bonin (2003) focus on the integration of 2D 
linear data such as roads, dikes and embankments. The linear 
objects are transformed into 2,5D surfaces by using attributes of 
the GIS data base and the height information of the DTM. 
Slopes and regularization constraints are used to check semantic 
correctness of the objects. However, in case of incorrect results 
the correctness is not established. A new DTM is computed 
using the original DTM heights and the 2,5D objects of the GIS 
data. 
 
This paper is organised as follows: In the following section 
semantics in terms of 2,5D topographic objects is explained. 
Then, the algorithm is presented in detail in section 3. Section 4 
illustrates the results which have been derived using a simulated 
and a real data set. The paper concludes with a short outlook 
related to future work. 
 

2. SEMANTICS OF 2,5D TOPOGRAPHIC OBJECTS 

If we have a look at the topographic objects of a 2D GIS, there 
are several objects which contain information about the third 
dimension. The objects include no height values, rather they 
contain implicit height information. For example, a lake is a 
standing water. This means that a locally restricted lake can 
geometrically be represented by a horizontal plane. The plane is 
bordered by a closed polygon. Outside this polygon the heights 
of neighbouring points have to be higher than the lake. We do 
not know the height of the lake but we know the shape and the 
relation to the neighbouring terrain. To give another example, 
roads are usually non-horizontal objects. We certainly do not 
know the mathematical function representing the road. But we 
know from experience and from road construction manuals that 
roads do not exceed maximum slope and curvature values in 
road direction and across. If these characterisations are not 
considered when integrating the data, an semantically incorrect 
result of the integration is obtained. Figure 1 shows two 
examples of an integration. In the left part three lakes are 
presented. The height levels inside the lakes are not constant. 
Primarily, at the banks it seems to be that the water is flowing 
up. The right part of Figure 1 shows a road network. Within the 
DTM the roads are not modelled correctly. Thus, the slopes and 
curvatures of the roads within the integrated data set have 
extreme values. These representations do not correspond to our 

view, the results are not semantically correct. 
Of course, beside these two objects all other objects are related 
to the third dimension, too. But it is often impossible to define 
general characteristics of their three-dimensional shape. For 
example, an agricultural field can be very hilly. But it is not 
possible in general to define maximum slope and cuvature 
values because these values vary from area to area. 
 

3. THE ALGORITHM 

The algorithm consists of two steps. One of these steps includes 
the establishment of the semantically correctness. This means 
that the topographic objects have to be represented in a 
semantically correct way. This is achieved by means of an 
optimisation where the semantics is introduced using 
mathematical equations and inequations (see 3.2). In a second 
step the integration of both data sets is applied which is based 
on a constrained Delaunay triangulation (see 3.3). The result is 
an integrated triangular irregular network (integrated TIN). 
After the integration the object polygon points are elements of 
the integrated TIN and their connections are edges of it. 
Therefore, all triangles of the TIN situated inside an object 
represent the object within the integrated data set. 
 
3.1 Preprocessing 

Before starting the optimisation the topographic objects of the 
GIS data have to be prepared. Mostly, objects like roads and 
paths are modelled by lines. In this paper data sets are used 
which cover a scale space of 1:5.000 to 1:25.000. Due to this, 
the objects should be represented by areas. Thus, they have to 
be buffered using an attribute road or path width. Another 
problem is that there may be large distances between 
neighbouring points of the original object lines. The calculation 
of the 2,5D shape of the objects using the height information of 
the DTM without considering the terrain between these 
neighbouring points can lead to erroneous results of the 
homogenisation. Therefore, additional points are introduced 
between the original points at which their number depends on 
the density of the original DTM points. 
Both data sets, the DTM and the topographic objects of the GIS 
data, are triangulated using a constrained Delaunay 
triangulation (Figure 2). The DTM-TIN is needed because 
within the optimisation heights of the object points have to be 
interpolated. The GIS-TIN is needed because the topology 
between different topographic objects has to be considered 

 
Figure 1. Results of an integration of a DTM and 2D vector data, no consideration of the semantics of the topographic objects 
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which is realised using inequality constraints (see chapter 
3.2.3). 
 
 

 
 

Figure 2. Left: DTM-TIN, right: TIN of the topographic 
objects (GIS-TIN) 

 
3.2 Homogenisation by optimisation 

In contrast to previous publications (Koch & Heipke, 2004) in 
this paper we also consider the accuracy of the horizontal 
coordinates of topographic objects. Therefore, the planimetric 
coordinates X,Y of the object polygons are introduced as 
unknown parameters within the optimisation process. 
Additionally, the heights of the objects and the heights of points 
of the neighbouring terrain have to be estimated. The aim of the 
optimisation is to produce coordinates which represent the 
topography in a semantically correct way. The semantic of the 
objects can be expressed by means of mathematical equations 
and inequations which can be formulated by observation 
equations and inequality constraints of an inequality 
constrained least squares adjustment: 
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subject to 
 
 xBb ˆ≥  (3) 
 
 
where the index c marks the observation constraints. The 
vectors v and vc are the residuals, l and lc are the reduced 
observations and the matrices A, Ac and B contain the 
derivations of the observations, the observation constraints and 
the inequalities to the unknown parameters x̂ . (2) is the 
stochastic model of the optimisation, it contains the accuracies 
and the accuracy relations of the observations respectively. 
The optimisation is solved using the Linear Complementary 
Problem (LCP) (Fritsch, 1985; Schaffrin, 1981). For more 
details see also Koch, 2003. 
 

In the following the observation equations, equality and 
inequality constraints are derived. The constraints are those 
observations and inequations which represent the semantics of 
the objects. The remarks are restricted to the object lake. 
 
3.2.1 Basic observations: As mentioned before, the 
horizontal coordinates of the object polygon points are 
introduced as unknown parameters. The basic observations are: 
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where ii Y,X  are the planimetric coordinates  of point Pi. ii Ŷ,X̂  
are the coordinates which are estimated within the optimisation. 
 
 

 
 
Figure 3. Part of an object lake (light grey area) bordered by 

its polygon points, DTM-TIN 
 
To preserve the shape of the objects the angles between three 
successive points are introduced (see Figure 3): 
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where jβ  ist the angle using the original planimetric 

coordinates of the three object points and *
jβ  ist the angle 

using the estimated planimetric coordinates of the three points. 
The heights of neighbouring points as well as height differences 
between these points and points of the object polygons are 
further basic observations. In this case neighbouring points are 
original DTM points situated in a certain distance to the point 
of the object. They do not belong to any object considered in 
the algorithm. The heights are introduced as: 
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where uZ  is the height of the original DTM point and uẐ  is 
the height which has to be estimated. 
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In order to be able to preserve the slope of an edge connecting 
two neighbouring points the height difference between these 
points is introduced: 
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where LẐ  is the unknown height of the lake. Because the GIS 
data are two-dimensional, the height iZ  is calculated by linear 

interpolation at the unknown position ii Ŷ,X̂ , i.e. the height 
difference between the neighbouring point and the object point 
at the estimated position has to be preserved. 
 
3.2.2 Observation constraints: A lake can be represented by 
a horizontal plane, i.e. the heights of all points situated inside 
the bordering polygon of the lake as well as the polygon points 
must have the same height level. The points inside the polygon 
are introduced as: 
 
 
 vZv ẐvZ

v
=+  (8) 

 
 
The points of the bordering polygon do not contain any height 
information. Therefore, the height iZ  has to be estimated at the 

unknow position ii Ŷ,X̂ . 
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3.2.3 Inequality constraints: The water of a lake is bordered 
by the object polygon points. This means that the heights of the 
neighbouring points have to be higher than the lake height. This 
constraint can be formulated using an inequality: 
 
 
 uL ẐẐ −>0  (10) 
 
 
where uẐ  is the height of the neighbouring point outside the 
object which has to be estimated. 
In order to prevent overlapping objects further inequalities are 
introduced which consider the topology of the GIS-TIN. An 
edge of an object polygon has a certain relation to a point which 
belongs to another object. The point is located on the left or on 
the right from the edge. This relation is formulated by an 
inequality constraint representing a determinant: 
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In case of (11) the constraint is that the point P with its 
coordinates Y,X  is located on the right from the edge whose 
points are Pi and Pj because the determinant has to be smaller 
than zero. 

3.3 Integration 

The integration is based on a DTM TIN computed using a 
constrained Delaunay triangulation (Lee & Lin, 1986, Stoter, 
2004). The object borders are splitted by introducing the 
intersection points between the DTM TIN and the object 
geometries (Steiner points) and the splitted object geometries 
are introduced as edges of the triangulation, the result is an 
irregular triangular network (TIN) - an integrated DTM TIN. 
For the sakes of completeness the algorithm is described in the 
following: The triangle which contains the first object point is 
used and the intersection points between the triangle and the 
object polygon are calculated. These points and the points of 
the object polygon in between are connected by new edges of 
the integrated TIN. Then, the left and right part of the object 
polygon inside the triangle are re-triangulated using a polygon 
triangulation. In this step the shape of the triangles is 
recursively optimised with respect to equal angles. After 
processing this triangle the neighbouring triangle in direction of 
the object polygon is used. The first intersection point is known 
from the calculations before, the second one is calculated and 
the integrated TIN is computed using a polygon triangulation 
again. This process is repeated for all 2D objects. When 
integrating the object geometry the heights of the Steiner points 
have to be interpolated using the heights of the estimated height 
values of the object points. Thus, the shape of the objects is 
preserved. 
 

4. RESULTS 

The results presented in this paper were determined using 
synthetic and real data sets. Single objects representing lakes 
were investigated. 
 
4.1 Data sets 

The synthetic data consist of a Digital Terrain Model containing 
mass points and structure elements. The mass points are 
approximately situated in a regular grid, the heights of the 
points, representing the surface of the DTM, are calculated 
using a sine function. The structure elements contain 
information about the topographic objects. In case of a lake 
they represent the water line and the break line between terrain 
and the bank. In Figure 4 the synthetic DTM and the 
corresponding GIS data set containing two lakes is shown. The 
DTM consists of 176 mass points and 71 points representing 
the structure elements (white lines). Random errors were added 
to the planimetric coordinates of the polygon points of the GIS 
data. Additionally, some points of the DTM inside the structure 

Figure 4. Synthetic data sets: DTM-TIN and two lakes of a 
GIS data set (blue) 
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element representing the water line contain random height 
errors. 
The real data set representing lakes consists of three ATKIS 
Basis-DLM objects with 294 planimetric polygon points. The 
corresponding DTM contains 1.961 grid points and 1.047 
points representing structure elements. The grid spacing is 12,5 
meters. 
 
4.2 Synthetic data 

The optimisation using the synthetic data leads to 444 
observations (basic observations and equation constraints). 
Additionally, 81 inequation constraints represent the relation 
between the neighbouring terrain and the lake heights and the 
two-dimensional neighbourhood relation between both objects, 
respectively. Against this, 177 parameters have to be estimated. 
During the preprocessing step just three points were added to 
the bordering polygons of the lakes because of oversized 
distances between neighbouring points of the objects (see 
chapter 3.1). 
First investigations were carried out using the same accuracy for 
all observations. This means that the covariance matrix of the 
observations and consequently also the weight matrix are unit 
matrices. The result is semantically correct. The heights of all 
DTM points situated inside the bordering polygon of a lake are 
identical because just one unknown height per lake was 
introduced. Additionally, the terrain outside increases, i.e. the 
heights of all neighboured points outside the objects are higher 
than the estimated lake heights. 

 
Figure 5 shows different groups of residuals. Each graph 
represents one group of observations which obtain one accuracy 
value and one weight respectively. Beneath the graphs the 
corresponding observation equation (basic observation, 
equation constraint) is specified. For instance, graph (8) are the 
residuals which arise from equation (8). Here, approximately 
half of the residuals of this group are negative and their 
absolute values are nearly identical. This is because some of the 
points have identical height values which are systematically 
higher than the mean value of the other points inside the 
structure elements representing the lake. Graph (5) represent the 
angle between three successive points of the bordering polygon 
of the object. In Figure 5 there are two graphs representing this 

observation equation. This is because it is possible to specify 
different accuracies for the angles in original points of the 
object and in points which arise from the preprocessing step of 
the approach (see chapter 3.1). The biggest residuals of this 
group are nearly -0,4 and +0,3 which correspond to -23 and +17 
degree respectively. This means that the object geometry is not 
preserved. Just a small number of points have new planimetric 
coordinates which differ more than half a meter from their 
original one. 
Introducing higher accuracies for the observation equation (5) 
leads to objects whose geometry is as before, i.e. the residuals 
of this group of observations are all nearly zero. Additionally, 
the changes of the planimetric coordinates of the object polygon 
points are larger than before. This means that the position of the 
objects have changed over a wieder area. Also, the observation 
equation (4) and (7), the height differences as well as the 
heights of neighbouring points, lead to larger residuals. But the 
estimated lake heights are nearly the same as before. 
A better accuracy of 0,01 and therefore a higher weight for the 
observation constraint (8) does not change the results of the 
optimisation. This is because the estimated lake heights of both 
investigations before are nearly identical to the mean value of 
the heights whose points are situated inside the bordering 
polygons of the objects. 
 
4.3 Real data 

It is important to know how accurate are the input data to obtain 
a realistic result of the optimisation process. Mostly, this 
information is missing. Just global values for all DTM points of 
one region whose data were acquired by a specific method 
exist. Additionally, a global value for the accuracy of all 
planimetric coordinates is available. This reduced information 
makes it impossible to get a result which can be used to update 
the data bases of the topographic data. 
 
 

 
 

Figure 6. Position and absolute values of residuals 
 

 
Figure 5. Different groups of residuals (see text for details)
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In the past structure elements representing the water line were 
often acquired by terrestrial measurements. The lake height, i.e. 
the heights of all DTM points inside the lake got the same 
height value. Thus, the DTM in these regions is of high 
accuracy and the observation equation (8) representing the 
heights inside the lake got an accuracy of 0,01 meter. The 
heights of the bordering polygon are derived by linear 
interpolation. These values are less accurate, which got a value 
of 1 m. The planimetric coordinates of the lake points have a 
global accuracy of 3 m. To prevent large geometric changes of 
the objects observation equation (5) also got a high accuracy of 
0,01. 
Figure 6 shows the residuals obtained by the optimisation using 
the mentioned accuracies. The white circles represent negative 
residuals of the heights, the black one are positive residuals. 
The arrows represent changes of the planimetric positions of the 
lake points. The crosses present positions where the residuals 
are zero. The larger the circles and the arrows are the larger are 
the absolute values of the corresponding residuals. 
Obviously, the north-eastern lake contains large residuals with 
alternating signs. The results point out gross errors in the data 
sets. A large part of the lake of the GIS data are systematically 
higher than most of the other points inside the lake. A high 
accuracy of these values lead to an estimated lake height which 
is nearly the mean value of the heights of all points inside the 
lake. In the bank the heights are reduced, i.e. the residuals are 
negative. Just a small number are positive. These values are 
caused by the inequation constraint (10). A 2,5D view of the 
result is given by Figure 7. 
 
 

 
 
 
 

5. OUTLOOK 

This paper presents an approach for the homogenisation and 
integration of a 2,5D DTM and 2D GIS vector data. In contrast 
to previous publications we also consider the accuracy of the 
horizontal coordinates of topographic objects. Therefore, the 
planimetric coordinates of the objects are introduced as 
additional unknown parameters within the optimisation process. 
First investigations were carried out using the object lake. The 
results are satisfying, the integrated data are semantically 
correct. But they depend on the information about the quality of 
the data. If this information is not available we have to draw 
conclusions about the accuracy using information about the 
acquisition method and other important facts. 
In the future other objects have to be investigated. Primarily, 
the weights of the different observations are much more 
important for other objects because the correctness of the data 
set depends on the weighting of different groups of 
observations. 
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Figure 7. Result of a homogenisation and an integration 
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