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Abstract

The most commonly used topographic vector data, the reference data of national geographic information systems (GIS) are
currently two-dimensional. The topography is modelled by different objects which are represented by single points, lines and areas
with additional attributes containing information, for instance on the function and size of the object. In contrast, a digital terrain
model (DTM) in most cases is a 2.5D representation of the earth's surface. The integration of the two data sets leads to an
augmentation of the dimension of the topographic objects. However, due to inconsistencies between the data the integration
process may lead to semantically incorrect results.

This paper presents a new approach for the integration of a DTM and 2D GIS vector data including the re-establishment of the
semantic correctness of the integrated data set. The algorithm consists of two steps. In the first step the DTM and the topographic
objects are integrated without considering the semantics of the objects. This geometric integration is based on a DTM TIN
(triangular irregular network) computed using a constrained Delaunay triangulation. In the second step those objects which contain
implicit height information are further utilized: object representations are formulated and the semantics of the objects are
considered within an optimization process using equality and inequality constraints. The algorithm is based on an inequality
constrained least squares adjustment formulated as the linear complementary problem (LCP). The algorithm results in an integrated
semantically correct 2.5D GIS data set.

Results are presented using simulated and real data. Lakes represented by horizontal planes with increasing terrain outside the
lake and roads which are composed of several tilted planes were investigated. The algorithm shows satisfying results: the
constraints are fulfilled and the visualization of the integrated data set corresponds to the human view of the topography.
© 2006 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights
reserved.
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1. Introduction

1.1. Motivation

Themost commonly used topographic vector data, the
reference data of national geographic information
systems (GIS) are currently two-dimensional. The
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topography is modelled by different objects which are
represented by single points, lines and areas with ad-
ditional attributes containing information, for instance on
function and size of the object. In contrast, a DTM inmost
cases is a 2.5D representation of the earth's surface. The
integration of the two data sets leads to an augmentation
of the dimension of the topographic objects. However,
due to inconsistencies between the data the integration
process may lead to semantically incorrect results.

Inconsistencies may be caused by different object
modelling and different surveying and production meth-
ods. For instance, vector data sets often contain roads
modelled as lines or polylines. The attributes contain
information on road width, road type etc. If the road is
located on a slope, the corresponding part of the DTM
often is not modelled correctly. The DTM points are
distributed in a regular grid and break lines are often
missing. When integrating these data sets, the slope
perpendicular to the driving direction is identical to the
slope of the DTM which usually does not correspond to
the real slope of the road. In addition, the DTM and the
GIS data are often produced independently. The DTM
may have been generated using LIDAR (light detection
and ranging) or aerial photogrammetry. Topographic
vector data may be based on digitized topographic maps
or orthophotos. These different methods may cause in-
consistencies, too.

Many applications benefit from semantically correct
integrated data sets. For instance, good visualizations of
3D models of the topography need correct data and are
important e.g. for flood simulations and risk manage-
ment. A semantically correct integrated data set can also
be used to produce correct orthophotos in areas with
non-modelled bridges within the DTM. Furthermore, a
semantically correct integration may show discrepancies
between the data and thus may allow to draw con-
clusions about the quality of the underlying DTM and
the vector data.

1.2. Related work

The integration of a DTM and 2D GIS data is an issue
that has been tackled for more than ten years. Weibel
(1993), Fritsch and Pfannenstein (1992) established
different forms of DTM integration: in case of height
attributing each point of the 2D GIS data set contains an
attribute “point height”. By using interfaces it is possible
to interact between the DTM programme and the GIS.
Either the two systems are independent or DTMmethods
are introduced into the user interface of the GIS. The total
integration or full database integration comprises a com-
mon data management within one database. The terrain
data is often stored in the database in the form of a TIN
whose vertices contain X, Yand Z coordinates. In general,
however, the DTM is not merged with the data of the GIS.
This merging process, i.e. the introduction of the 2D
geometry into the TIN, has been investigated later by
several authors (Lenk and Heipke, 2006; Lenk, 2001;
Klötzer, 1997; Pilouk, 1996). The approaches differ in the
sequence of introducing the 2D geometry, the amount of
change of the terrain morphology and the number of
vertices after the integration process. Stoter (2004) dis-
tinguishes between three different forms of integrated
TINs: constrained TIN, conforming TIN and refined
constrained TIN. They differ in the number of vertices and
in the shape of the triangles near the integrated object
geometries.

Among others, Lenk and Klötzer argue that the shape
of the integrated TIN should be identical to the shape of
the initial DTM TIN. Lenk developed an approach for the
incremental insertion of object points and their connec-
tions into the initial DTM, represented as a TIN. The
sequence of insertion is object point, object line, object
point etc. The intersection points between the object line
and the TIN edges (Steiner points) are considered as new
points of the integrated data set (see Section 3).

Klötzer, on the other hand, first introduces all object
points, then he carries out a new, preliminary triangula-
tion. Subsequently, he determines the Steiner points and
adds these points and the edges between the points to the
data set. Since the Delaunay criterion is re-established in
the preliminary triangulation, the shape of the integrated
TIN may deviate somewhat from the one of the initial
DTM. All methods have in common, that the mentioned
inconsistencies between the data are neglected and thus
may lead to semantically incorrect results.

Rousseaux and Bonin (2003) focus on the integration
of 2D linear data such as roads, dikes and embankments
into a DTM. The linear objects are transformed into
2.5D surfaces using attributes (road width and height) of
the GIS database and the height information of the
DTM. Slopes and regularization constraints are used to
check semantic correctness of the objects. However, in
case of incorrect results the correctness is not estab-
lished. Only a new DTM is computed using the original
DTM heights and the 2.5D objects of the GIS data.

2. Semantic correctness

2.1. Purely geometric integration

ADTM is composed of points with its coordinatesX,Y,
Z and an interpolation function to derive Z values at
arbitrary positions X, Y. Mostly the DTM is a 2.5D
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representation of the topography, i.e. bridges, vertical walls
and overhangs are not modelled correctly. Against this, the
topographic vector data we consider are two-dimensional.
The topography is modelled by different objects which are
represented by single points, lines and areas.

Fig. 1 shows two examples of a purely geometric
integration of a DTM and 2D topographic vector data (an
integration without considering the semantics of the
topographic objects). The left part shows some lakes, to
the right a road network is shown. The integrated data set
is represented by a TIN. The height values of the lakes do
not have a constant height level. Several heights of the
lakes near the bank are higher than the mean lake height.
Also, the roads are not modelled correctly in the
corresponding part of the DTM. The slopes of the cross
sections are identical to themean slope of the DTM.There
are no breaklines at the left and right borders of the roads.
Also, neighbouring triangles of the DTMTIN show rather
different orientations. These representations of the lakes
and the road do not correspond to the human view of the
topography and thus represent a semantically incorrect
result of the integration process.

2.2. Semantically correct integration

If we divide the topography into different topograph-
ic objects (roads, rivers, lakes, buildings, etc.), several
objects have a direct relation to the third dimension.
These objects contain implicit height information. For
example, a lake can be described as a horizontal plane
with increasing terrain at the bank outside the lake. To
give another example, roads are usually non-horizontal
objects. We certainly do not know the mathematical
function representing the road height, but we know from
experience and from road construction manuals that
roads do not exceed maximum slope and curvature
values in and across the driving direction.
Fig. 1. The integration of a DTM and 2D topographic vector data without co
Of course, all other objects are related to the third
dimension, too. But it is difficult and often impossible to
define general characteristics of their three-dimensional
shape. For example, an agricultural field can be very
hilly. It is not possible in general to define maximum
slope and curvature values because these values vary
from area to area.

The objects containing implicit height information,
which needs to be used for a semantically correct integ-
ration, can be divided into three different classes (see
Table 1). The first class contains objects which can be
represented by a horizontal plane. The second class
describes objects which are composed of several tilted
and connected planes. The extent of these planes
depends on the curvature of the terrain and the size of
the object. Using the planes it is possible to adequately
approximate the corresponding part of the original
DTM. The last class shown in Table 1 describes objects
which have a height relation to other objects. Bridges,
tunnels and overpasses may contain a certain height
relation to the terrain or water above or beneath.
Whereas we deal with objects of the first two classes
in the following, those of the third class are outside the
scope of this paper.

To integrate a DTM and a 2D topographic GIS data
set in a semantically correct sense, the implicit height
information of the mentioned topographic objects has to
be considered during the integration. This means, that the
integrated data set must be consistent with our view of
the topography. With a view to national reference GIS
databases this means e.g., that all height values of points
of the bounding polygon of a lake and all heights situated
inside the bounding polygon must have the same height
level, and the DTM points at the bank outside the lake
must be higher than the lake height. Also, the slope and
curvature of roads are bounded in and across the driving
direction, the slope across the road can usually be
nsidering the semantics of the objects; left: lakes, right: road network.



Table 1
Some topographic objects and their representation in the corresponding
part of the terrain

Object Representation

Sports field Horizontal plane
Race track
Runway
Dock
Canal
Lake, pool
Road Tilted connected planes
Path
Railway, tramway
River
Bridge Height relation
Tunnel
Underpass, overpass
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neglected This means that points of a road cross section
can be assumed to have constant height.

3. An algorithm for the semantically correct
integration

The aim of the integration is to construct a consistent
data set with respect to the underlying data model which
complies with the semantics of the topographic objects
in the sense described above. First, topographic objects,
which are modelled by lines, are converted into elon-
gated area objects, since they of course have a certain
width in the landscape. This task is carried out through
buffering, the buffer width is taken from the attribute
width if available; otherwise a default value is used.
After this pre-processing step the data sets are geomet-
rically integrated without considering the semantics of
the topographic objects (Section 3.1). The integration is
based on a DTM TIN computed using a constrained
Delaunay triangulation (Lee and Lin, 1986). The object
borders are split by introducing the intersection points
between the DTM TIN and the object geometries (Stei-
ner points) and the split object geometries are introduced
as edges of the triangulation. The result is an irregular
triangular network — an integrated DTM TIN. Then,
certain constraints are formulated and are taken care of
in an optimization process (Section 3.2). In this way, the
topographic objects of the integrated data set are made
to fulfill predefined conditions related to their seman-
tics. The constraints are expressed in terms of mathe-
matical equations and inequality constraints. The
algorithm results in improved height values, which
lead to a semantically correct, integrated 2.5D topo-
graphic data set.
A basic assumption of our approach is that the general
terrain morphology as reflected in the DTM is correct and
has to be preserved also in the neighbourhood of objects
carrying implicit height information. Therefore, any
height changes resulting from the integration must be as
small as possible, and the neighbourhood of the objects
has to be taken into account in order to guarantee a smooth
transition between changed and non-changed areas. A
second assumption is that inconsistencies between DTM
and topographic objects stem from inaccurate DTM
heights and not from planimetric errors of the topographic
objects.We have introduced the latter assumption in order
to separate the two potential causes of error. It is clear that
if this assumption is violated, the results produced by our
method may not be of much use.

3.1. Geometric data integration

There are several approaches for the integration of a
DTM and 2D topographic GIS data based on a trian-
gulation. The advantage of Lenk's approach (Lenk and
Heipke, 2006; Lenk, 2001) compared to others is that the
surface shape represented by the integrated TIN is iden-
tical to the one of the initial DTM TIN. The disadvantage
is that the approach results in a large amount of Steiner
points which lead to additional observation equations and/
or inequality constraints (see Section 3.2). Since we
require the changes of the original heights to be as small as
possible (see above), we have chosen to use Lenk's
method, improving it with respect to the shape of the
triangles of the integrated TIN. For the sakes of com-
pleteness the algorithm is shortly described in the
following: Starting from a DTM TIN the 2D object
points and their connections are inserted: The location of
the first starting polygon point is determined, and then the
intersection points between the triangle sides and the
object polygon are calculated and introduced into the
polygon. As a result, new polygon sides are created,
which lie exactly inside the triangle. Similar to Lenk any
redundant points are now discarded. The polygon sides
are considered as edges to be preserved, and both, the left
and the right part of the object polygon inside the triangle,
are re-triangulated using a polygon triangulation. In this
step the shape of the triangles is recursively optimised
with respect to equal angles: for all possible solutions the
smallest triangle angle is determined, and the solution
with the largest such angle is selected. After processing
this triangle the neighbouring triangle in direction of the
object polygon is considered. The first intersection point
is known from the calculations before: the second one is
now computed and the integrated TIN is derived in the
same way. This process is repeated for all 2D objects. The



Fig. 2. Integration of a DTM and a topographic object “lake”, A)
original DTM TIN and object “lake”, B) integrated data set.

Fig. 3. Integration of a DTM and a topographic object “road”, A) original
DTM TIN and object “road”, B) intersection between DTM TIN and
object.
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result of this geometric integration is unique because of
the exhaustive search in the polygon triangulation.

Fig. 2 shows an example of the integration of a DTM
and an object “lake” of a 2D GIS data set. The original
points of the bounding polygon of the lake are shown in
white. After the integration, the intersection points
between the DTM TIN and the object polygon are new
points of the integrated data set (depicted in black).

Another example is given in Fig. 3. The shown road is
modelled by lines, which is buffered using the roadwidth
(Fig. 3A). First, the intersection points between the road
axis and the DTM TIN are introduced as new points of
the road object (see black points). This is done because
every triangle may have a different inclination and the
road axis should be best fitted to the terrain represented
by the DTM TIN. The left and right side of the buffered
road, which contain as many points as the road axis
including the new points, are then introduced using the
described variant of Lenk's algorithm (Fig. 3B).

3.2. Optimization process

As mentioned, there are topographic objects of the
2D GIS data which contain implicit height information.
Within the integrated data set these objects have to fulfill
certain constraints which can be expressed in terms of
mathematical equations and inequality constraints. To
fulfill these constraints and thus to achieve semantic
correctness, the heights of the DTM are adapted. As
mentioned before, the horizontal coordinates of the
polygons of the topographic objects are introduced as
error-free in our current approach.

The heights of the topographic objects and the
neighbouring heights outside the objects are considered
as unknowns and are estimated within an optimization
process which is based on a least squares adjustment.
The heights of the corresponding part of the DTM are
introduced as direct observations for the unknown
heights at the same planimetric position. Equality con-
straints are introduced using pseudo observations, and
the adherence to the constraints is controlled via weights
for the pseudo observations. Furthermore, inequality
constraints are formulated to described additional
constraints. The optimization process is solved using
the linear complementary problem (LCP) (Lawson and
Hanson, 1995; Fritsch, 1985; Schaffrin, 1981).

3.2.1. Basic observation equations
The heights of the DTM which correspond to the

topographic objects of the 2D GIS data (heights inside



Fig. 4. Equality and inequality constraints of a horizontal plane,
topographic object “lake”, A) points inside the lake and points of the
waterline, B) points of the neighbouring terrain.
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the objects, heights of points of the bordering polygon,
heights of neighbouring points outside the objects) are
introduced as:

m̂i ¼ Ẑi−Zi ð1Þ

The height Zi refers to the original height of the
DTM, the value Ẑi denotes the unknown height which
has to be estimated, ν̂i is the residual of the observation
i. In case of a point of the bounding polygon Zi has to be
interpolated using the height information of the DTM.

In order to be able to preserve the slope of an edge
connecting two neighbouring points Pj and Pk of the
DTM TIN where one is part of the polygon describing
the object, and the other one is a neighbouring point
outside the object (and thus to constrain changes to the
general shape of the integrated DTM TIN) additional
equations are formulated:

m̂jk ¼ Ẑj− Ẑk−ðZj−ZkÞ ð2Þ

3.2.2. Equality and inequality constraints
Each class of object representation (see Table 1) has

its own constraints which can be expressed in terms of
mathematical equality and inequality constraints. These
constraints are derived next for the two types of planes.

3.2.2.1. Horizontal plane. Heights of objects which
represent a horizontal plane must be identical every-
where. This means that points Pl with height Zl and
planimetric coordinates Xl, Yl situated inside the object
boundary (see Fig. 4A, grey points) must all have the
same value ẐHP which has to be estimated in the
optimization process. These height values lead to the
following observation equation:

m̂l ¼ ẐHP−Zl ð3Þ

Since the points Pm of the bounding polygon of the
topographic objects with planimetric coordinates Xm,
Ym do not have a value Zm, heights are derived from the
DTM. We linearly interpolate Zm, from the three
neighbouring values Zu, Zv, Zw. Again, the height
difference between the unknown object height and the
interpolated height is used to formulate a pseudo
observation (see Fig. 4A, black points):

m̂m ¼ ẐHP−ZmðXm; Ym; Zu; Zv; ZwÞ ð4Þ

The neighbouring terrain of the horizontal plane is
considered using the basic observation equations, Eqs.
(1) and (2) (see Section 3.2.1). If the object represents a
lake it is necessary to use a further constraint which
represents the relation between the lake in terms of a
horizontal plane and the bank of the lake whose height
values Ẑi have to be higher than the height level of the
lake ẐHP:

0N ẐHP− Ẑi ð5Þ
In Fig. 4B the points Ẑi of Eq. (5) which are points of

the neighbouring terrain are shown in black.

3.2.2.2. Tilted planes. The objects treated in this paper
which can be composed of several tilted planes are roads.
The example in Fig. 5 shows a road which is modelled by
a centre line and then buffered using the attribute “road
width”. In longitudinal direction roads are not allowed to
exceed a predefined maximum slope value smax:

smaxzj Ẑn− Ẑo

Dno
j ð6Þ

Here, Ẑn and Ẑo are the unknown height values of
successive points Pn and Po of the road axis (Fig. 5A).
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Dno is the horizontal distance between these points. In
addition, the difference between two successive slope
values which is comparable to the curvature of the
object is restricted to the maximum value dsmax:

dsmaxzj Ẑn− Ẑo

Dno
−
Ẑo− Ẑp

Dop
j ð7Þ

Pn, Po and Pp are successive points of the road axis,
Dno and Dop are the corresponding horizontal distances.
The values smax and dsmax are based on road construc-
tion manuals or on experience.

Assuming a horizontal road profile in the direction
perpendicular to the axis the height values of
corresponding points must be identical:

m̂nq ¼ Ẑn− Ẑq ð8Þ

The values Ẑn and Ẑq represent the heights of the axis
and the left or the right side of the buffered object,
Fig. 5. Equation and inequation constraints, A) maximum slope and
maximum slope difference, B) horizontal profile and points belonging
to a plane.
respectively (Fig. 5B). These constraints are introduced
for all cross sections whose centre point results from the
intersection between the DTM TIN and the
original object line. In Fig. 5B these cross sections are
p1 and p3.

Those cross sections whose centre points are original
points of the object axis are not used to form this kind of
constraint because in the original points the road may
show a change in horizontal direction and slope (cross
section p2 in Fig. 5B). Consequently, the cross section
may be inclined.

Finally, the points of any two neighbouring cross
sections and the points in between are constrained to lie
in a plane:

0þ m̂r ¼ â0 þ â1 Xr þ â2 Yr− Ẑr ð9Þ

In Fig. 5B the points of the neighbouring profiles p1
and p2 as well as the points in between form the input to
Eq. (9). These points Pr have to lie on the plane
described by the unknown coefficients â0, â1, â2. Xr, Yr
are the planimetric coordinates of Pr, Ẑr is the height of
Pr which has to be estimated.

3.2.3. Inequality constrained least squares adjustment
The basic observation equations (Section 3.2.1) and

the equation and inequality constraints (Section 3.2.2)
are introduced in an optimization process which is based
on an inequality constrained least squares adjustment.
The stochastic model of the observations (basic
observations and equation constraints) consists of the
covariance matrix of the observations. Assuming that
the observations are independent of each other, this
matrix has a diagonal structure and contains only the
variances of the observations. The algorithm is formu-
lated as the linear complementary problem (LCP) which
is solved using the Lemke algorithm (Lemke, 1968). For
more details see Koch (2003), the LCP is explained in
detail in Lawson and Hanson (1995), Fritsch (1985) and
Schaffrin (1981).

In the LCP, the inequality constraints are treated as
hard constraints, which are automatically fulfilled. To
fulfill also the equation constraints the related observa-
tions have to be considered to have a high accuracy, and
the corresponding diagonal elements of the weight
matrix (the inverse of the covariance matrix) have to be
large. The constraints formulated for the integration are
then fulfilled, if the residuals of the equation constraints
are negligible. Thus, the semantic correctness of the
resulting integrated data set depends on the choice of the
weights of the equation constraints compared to those
for the basic observation equations, where the latter



Fig. 6. Height differences between the original heights of the DTM and the estimated heights of the optimization process (vertical exaggeration factor:
30), object: lake.
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should be based on the quality of the input height
information.

4. Results

In this chapter we present results of some experi-
ments conducted to study the behaviour of the
developed integration method for different kinds of
input data. The aims are to show (1) how the results
depend on the weights of the basic observations and the
equation constraints using simulated data, and (2) the
behaviour of the algorithm using real data. We have
investigated two different object classes— lakes, which
are represented by horizontal planes, and roads which
are composed of several connected tilted planes.

4.1. Simulated data

For the simulationwe first created an artificial landscape
with a 10 m DTM and integrated a lake with 221 height
values and three roads to it in a semantically correct
manner. The heights near the lake were chosen to be a little
larger than thewater heights. The distance between the lake
and the roads was large enough, so that the objects did not
Fig. 7. Results of the integration, left: without considering the semantics
influence each other. We then added white noise with a
standard deviation of 0.5 m to all heights. This value was
also introduced as the standard deviation for the basic
observation equations, Eqs. (1) and (2).

In the case of horizontal planes, theory dictates that the
result must always be semantically correct, because re-
gardless of the weights for the Eqs. (1), (2), (3) and (4) one
can compute a mean value for the plane from the esti-
mated heights, and this mean value represents the lake
height. Because of the introduced noise some of the
heights of the neighbouring points (the points near the
lake) became smaller than the mean value of the original
heights of the object points (the heights of the lake border
and those inside the lake). As a consequence, some of the
inequality constraints Eq. (5) are not fulfilled. This situa-
tion changes during the optimization in two ways: the
heights on the banks become larger, and the height of the
lake is slightly reduced compared to the mean value of the
input values. In this way a semantically correct result is
achieved, as was to be expected. Furthermore, the em-
pirical standard deviation of the heights inside the lake are
nearly identical to the accuracy of the DTM because the
residuals directly represent the differences between the
estimated lake height and the original DTMheight values.
of the topographic objects, right: semantically correct integration.
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The road data set consists of three objects and a DTM
with 315 grid points. In order to obtain a semantically
correct result, theweights for the equation constraints Eqs.
(8) and (9) were set to high values, the standard deviations
of the basic observation equations, Eqs. (1) and (2), result
from the height accuracy of the input DTM. In this case
the residuals of the equation constraints obviously also
become small, but the residuals of the road border points,
the points inside the roads, and the original DTM points
are larger. Up to a standard deviation of about 0.2 m for
the equation constraints Eqs. (8) and (9) their theoretical
standard deviation turned out to be smaller than 0.05 m,
which for most applications can be considered to be small
enough to call the result semantically correct.

The results show, that in case of lake the results always
are semantically correct, but they depend on the quality of
the input data. In case of a road the ratio between the
weights of the equation constraints and the basic obser-
vation equations is of crucial importance in order to obtain
a semantically correct result.

4.2. Real data

The real data were taken from the German ATKIS.1

Three different lakes from an area in Lower Saxony were
used, the dataset covers an area of 450 times 650 m2. The
lake borders consist of 294 planimetric polygon points,
the DTM contains 1.961 grid points with additional 1.047
points representing structure elements (break lines). A
semantically correct integration was carried out by using
standard deviations of 0.5 m for the basic observation
equations, Eqs. (1) and (2), and 0.1 m for the equality
constraints, Eqs. (3) and (4). The number of basic obser-
vations and equation constraints was 2.754; 533 para-
meters had to be estimated and the number of inequality
constraints was 530. The results show, that all constraints
were fulfilled after carrying out the optimization. The
differences between the estimated lake heights and the
initial mean height values of the object points are very
small. The first mean height of the first lake is reduced by
2 mm, that of the second one by 4 mm. The third lake is
3.7 cm lower than the original mean height value. This
larger value is caused by a higher number of heights at the
1 ATKIS stands for Authoritative Topographic Cartographic
Information system and represents the German national geospatial
reference database. The DLMBasis (basic digital landscape model)
contains the highest resolution an, approximately equivalent to a
topographic map 1:25,000, the DTM DGM is a hybrid dataset
containing regularly distributed points with a grid size of 12.5 m and
additional geomorphological information and an accuracy of
approximately 0.5 m in Lower Saxony (AdV, 1989).
bankwhich initially did not fulfill the inequality constraint
(Eq. (5)).

Fig. 6 shows the residuals after the optimization
process. The blue vectors correspond to height values
which are lower than the original heights. Red coloured
vectors refer to heights which became higher. The figure
shows that most of the heights inside the lakes became
higher. Most of the points which became lower are sit-
uated at the border of the lakes. Against it, a big part of the
differences of the left lake became lower, too. Here, the
corresponding part of the DTM seems to be erroneous.
The maximum differences between the original heights
and the estimated heights are −1.84 m and +0.88 m,
respectively. Fig. 7 shows the result of the semantically
correct integration (right side) with respect to the results
without considering the semantics of the lakes (left side,
identical to Fig. 1). The semantically correct integrated
data set shows that all constraints are fulfilled; the height
values inside the lake and at the water line have the same
level, the terrain outside the lake rises.

5. Conclusions and outlook

This paper presents an approach for the integration of a
DTM and 2D topographic GIS data including the re-
establishment of the semantic correctness of the integrated
data set. The algorithm is based on a Delaunay triangu-
lation and a least squares adjustment taken inequality
constraints into account. Investigations were carried out
using simulated and real data sets. The objects used in our
investigations are lakes represented by a horizontal plane
with increasing terrain outside the lake, and roads which
can be composed of several tilted planes. The results are
satisfying. In case of a lake the results always are seman-
tically correct, the actual result (the lake height) depends
on the quality of the input data. For roads the semantic
correctness depends on the relation between the weights
of the equation constraints and the basic observations. In
the investigated example, this choice turned out not to be
very critical, however.

Height blunders are not modelled and can therefore
lead to non-realistic, yet in the sense of the paper seman-
tically correct results. Thus, blunders have to be detected
and corrected prior to the overall adjustment. Further-
more, the planimetric coordinates of the topographic
objects were introduced as error-free. This may cause an
erroneous height level of the topographic objects. Another
issue which shows up implicitly in our research is the
conversion of spatial dimension of topographic vector
data such as road data from 1D to 2D. While we use the
buffer method to do so in our work, the conversion of
spatial dimension is a much more general problem which
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needs considerable attention when extending our ap-
proach to other object classes. In addition, planimetric
coordinates of structure elements have to be explicitly
considered in the adjustment algorithm. Otherwise, the
resulting surface may deviate from the one represented by
the initial DTM. We currently work on these issues, and
also develop an extension which incorporates planimetric
shifts for inaccurate 2D vector data in the adjustment
procedure.
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