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Abstract

In this paper we apply Conditional Random Fields to
the classification of scenes containing crossroads. We
use a simple appearance-based model in combination
with a probabilistic model of the co-occurrence of class
labels at neighbouring image sites to distinguish differ-
ent classes that are relevant for scenes containing cross-
roads. We make use of multiple overlap aerial images
to derive a digital surface model and a true orthophoto
without dynamic objects such as cars. Our approach is
evaluated on a data set of airborne photos of an urban
area by a comparison of the results to reference data
and it is shown to produce promising results.

1 Introduction

The automatic reconstruction of roads has been an
important topic of research in Remote Sensing for a
long time. Whereas road extraction methods are reliable
under favourable conditions, e.g. in rural areas, they are
far from being practically relevant in more challenging
environments, e.g. in suburban regions. Failure is often
related to crossroads, where model assumptions about
roads are violated [9]. Thus, specific models for the
extraction of crossroads from images have to be devel-
oped. This has been tackled in [1], where neural net-
works are used for a supervised per-pixel classification
of greyscale orthophotos to detect areas corresponding
to crossroads. However, only examples for rural areas
are shown. In [11], a model based on snakes is used to
reconstruct crossroads. The main reasons for failure of
that method were occlusion of the road surface by cars
and a complex 3D geometry, e.g. at motorway inter-
changes. To overcome these problems, 3D information,
e.g. in the form of a Digital Surface Model (DSM),
has to be used. Furthermore, context should be consid-
ered in the classification of the image content. This can
be achieved by Markov Random Fields (MRF), which
have been used for some time as a probabilistic model

for local context [7]. More recently, Conditional Ran-
dom Fields (CRF) were introduced to avoid the prob-
lems of MRFs with oversmoothing in areas where the
image content changes abruptly [6]. In remote sensing,
CRF have been used for the detection of buildings in
optical and SAR images [14], for the classification of
optical satellite images [4], and for the generation of a
Digital Terrain Model (DTM) from airborne laserscan-
ner data [8]. In this paper we propose a new method for
the classification of scenes containing crossroads as a
first step of a 3D reconstruction. CRF are employed for
a raster-based classification. We use multiple-overlap
aerial images in order to derive a DSM that is used in
classification to make it more robust with respect to am-
biguities of the appearance of objects in a 2D projection
of the scenes. Due to the multiple overlap images, we
can solve the problem of occlusions of the road surface
by moving cars. Our method is evaluated using the Vai-
hingen data set of the German Society of Photogramme-
try, Remote Sensing and Geoinformation (DGPF) [2],
comparing three different variants of the classifier to as-
sess the impact of considering context in classification.

2 Conditional Random Fields (CRF)

CRF are undirected graphical models that can be
used to consider context for the image labelling problem
by modelling statistical dependencies between the la-
bels and the data at neighbouring image sites [6]. Given
image data y consisting of M image sites i ∈ S with
observed data yi, i.e., y = (y1, y2, . . . , yM )T , where S
is the set of all sites, we want to assign a discrete class
label xi from a given set of classes C to each site i (e.g.,
an individual pixel or a segment). Collecting the class
labels xi in a vector x = (x1, x2, . . . , xM )T , we want to
find the label configuration x̂ that maximises the poste-
rior probability of the labels given the data p(x|y), thus
x̂ = argmaxx p(x|y). CRF are discriminative models
that directly model the posterior probability p(x|y) [6]:



p(x|y) = 1

Z
· exp

[∑
i∈S

ϕi(xi, y)+
∑
i∈S

∑
j∈Ni

ψij(xi, xj , y)
]
.

(1)

In Eq. 1, Z is a normalization constant and Ni is the
neighbourhood of data site i (thus, j is a neighbour of
i). The association potential ϕi links the class label xi
of image site i to the data y, whereas the interaction po-
tential ψij models the dependencies between the labels
(xi, xj) of neighbouring sites i and j and the data y.
The model is very general in terms of the definition of
the functional models for both ϕi and ψij . Our defini-
tions of the image sites, the neighbourhood Ni and the
potentials ϕi and ψij are described in Section 3.

3 Method

The primary input of our method consists of multiple
aerial colour infrared (CIR) images and their orienta-
tion data. We require at least fourfold overlap from two
different image strips for each crossroads to avoid oc-
clusions. Using the OpenCV implementation of semi-
global block matching [10], we obtain a raw DSM from
each possible image pair. These raw DSMs are com-
bined to a joint DSM, and remaining void areas are
filled by an in-painting algorithm [5]. Using the DSM,
a true orthophoto is generated from each original im-
age. Merging the resulting raw orthophotos to a com-
bined orthophoto, we eliminate moving cars by taking
the median color vectors of the multiple raw images [5].

Both the DSM and the combined true orthophoto
are used as the input to the CRF-based classifier. In
the classification process, we choose the image sites
and, thus, the nodes of the graphical model, to corre-
spond to image patches of n × n pixels of the true or-
thophoto. The neighbourhood Ni of an image site i in
Eq. 1 (which defines the edges of the graphical model)
is chosen to consist of the four direct neighbours of site
i in the image grid. We define six classes that are char-
acteristic for scenes containing crossroads, namely as-
phalt (asp.), building (bld.), tree (tr.), grass (gr.), agri-
cultural (agr.) and car. From the orthophoto and the
DSM we extract the feature vectors for classification.
In a training phase we determine the parameters of the
association and interaction potentials in Eq. 1, which re-
quires fully labelled training images. Then, the classifi-
cation of new images can be carried out by maximizing
the posterior probability in Eq. 1.

The association potential ϕi(xi, y) in Eq. 1 is related
to the probability of a label xi taking a value c ∈ C
given the data y byϕi(xi, y) = log p(xi = c | fi(y)) [6],
where the image data are represented by site-wise fea-
ture vectors fi(y) that may depend on all the observed

data y. Note that both the definition of the features and
the dimension of the feature vectors fi(y) may vary with
the dataset. We use a simple model for p(xi = c | fi(y))
that is based on a Bayesian classifier with uniform
prior on the class labels, thus p(xi = c | fi(y)) ∝
p(fi(y) | xi = c) and, neglecting terms that are con-
stant over the classes, ϕi(xi, y) = log p(fi(y) | xi = c).
In the training phase, for each class we generate his-
tograms of all features. These histograms are smoothed
and normalised, and the smoothed and normalised his-
tograms are used as probability density functions (pdf)
p(fij | xi = c) ≡ pc(fij | xi) for the class c, where
fij is the jth component of fi. Neglecting the statis-
tical dependencies between the individual features fij ,
the association potential becomes:

ϕ(xi = c, y) =
N∑
j=1

log
[
pc(fij | xi)

]
. (2)

In Eq. 2,N is the dimension of the feature vectors fi(y).
This is a very simplistic model, which is to be replaced
by more appropriate ones in the future. Its advantage is
that it is very fast to determine in training.

The interaction potential ψij(xi, xj , y) in Eq. 1 de-
scribes how likely xi is to take the value c given
that the label xj from the neighbouring data site
j ∈ Ni takes the value c′ and given the data:
ψij(xi, xj , y) = log p(xi = c | xj = c′, y) [6].
We generate a 2D histogram h′(xi, xj) of the co-
occurrence of labels at neighbouring image sites from
the training data. That is, h′(xi = c, xj = c′) is the
number of occurrences of the classes (c, c′) at neigh-
bouring pixels i and j. After that, the rows of h′(xi, xj)
are scaled so that the largest value in a row will be
one, resulting in a matrix h(xi, xj) that is the basis
for the interaction potential. Scaling is necessary to
avoid a bias for classes covering a large area in the train-
ing data. We determine the Euclidean distance between
the feature vectors fi and fj at the neighbouring image
sites i and j, dij = ‖fi(y)− fj(y)‖. Our definition of
ψij(xi, xj , y) ≡ ψij(xi, xj , dij) is obtained by multi-
plying the diagonal elements of h(xi, xj) by a weight
depending on dij and taking the logarithms:

ψij(xi, xj , y) =

 log
[

2λ√
λ2+d2ij

· h(xi, xj)
]

if xi = xj

log
[
h(xi, xj)

]
otherwise

(3)
In Eq. 3, the parameter λ determines the relative weight
of the interaction potential compared to the association
potential. As the largest entries of h(xi, xj) are usually
found in the diagonals, a model without the weight fac-
tor in Eq. 3 would favour identical class labels at neigh-
bouring image sites and, thus, result in a smoothed label
image. This will still be the case if the feature vectors at
neighbouring image sites are identical. However, large
differences between the features will reduce the impact



of this smoothness assumption and make a class change
between neighbouring image sites more likely.

Exact probabilistic methods for training of a CRF are
computationally intractable [6, 13]. Thus, approximate
solutions have to be used for training. We determine the
parameters of the association and interaction potentials
separately. Given the training data (fully labelled im-
ages), the probabilities pc(fij |xi) are determined from
smoothed histograms of the features fij of each class as
described above. The interaction potentials are derived
from scaled versions of the 2D histograms of the co-
occurrence of classes at neighbouring image sites in the
way described above. The parameter λ in Eq. 3 is set
to a value λ = 2, determined empirically. Exact infer-
ence is also computationally intractable for CRFs. We
use Loopy Belief Propagation, a standard technique for
probability propagation in graphs with cycles [13].

4 Features

We derive a feature vector fi(y) for each image site
i that consists of features derived from the orthophoto
and features derived from the DSM. For numerical rea-
sons, all features are scaled linearly into the range be-
tween 0 and 255 and then quantized by 8 bit.

In total, we determine N = 18 features. The first
three features are the normalized difference vegetation
index (NDVI), derived from the near infrared and the red
band of the CIR orthophoto, the saturation (sat) com-
ponent after transforming the image to the LHS colour
space, and image intensity (int), calculated as the aver-
age of the two non-infrared channels. These features
are derived at three different scales, namely for the in-
dividual pixels and taking the average over 10× 10 and
100× 100 pixels, respectively; this results in altogether
nine features (NDV I1, sat1, int1, NDV I10, sat10,
int10, NDV I100, sat100, int100). We also make use of
the variance of intensity (varint), the variance of satura-
tion (varsat) and the variance of gradient (vargrad) deter-
mined from a local neighbourhood of each pixel (7× 7
pixels for varint, 13 × 13 pixels for varsat and vargrad).
The 13th feature (dist) models the fact that road pixels
are usually found in a certain distance either from road
edges or road markings. We generate an edge image by
thresholding the intensity gradient of the input image.
Then, we determine a distance map from this edge im-
age. The dist feature is the distance of an image site to
its nearest edge pixel.

The next group of features is based on histograms of
oriented gradients (HOG) [3]. We calculate the HOG
descriptors for cells consisting of 7 × 7 pixels, using
blocks of 2× 2 cells for normalization. Each histogram
consists of 9 orientation bins (20◦ per bin). The gradient

directions are related to the main direction of the entire
scene, supposed to correspond to the direction of one of
the intersecting roads. We extract three features from
the HOG descriptor, namely the value corresponding to
the main direction (HOG0) and the values at its two
neighbouring bins (HOG−1, HOG+1).

Finally, we determine a coarse DTM from the DSM
by applying a morphological opening filter with a struc-
tural element whose size corresponds to the size of the
largest off-terrain structure in the scene, followed by a
median filter with the same kernel size. The last two
features are the difference nDSM between the DSM
and the DTM, which describes the relative elevation of
objects above ground, and the gradient strength of the
DSM (||∇DSM ||).

5. Experiments

For evaluation, we used a part of the Vaihingen data
set of the DGPF [2]. We selected 81 crossroads visible
in at least four of the CIR images. For each of them,
we generated a DSM and a true orthophoto covering
an area of 80× 80m2 with a GSD of 8 cm. The image
patches were squares of 5×5 pixels, so that each graph-
ical model consisted of 200× 200 nodes. The reference
was generated by manually labeling the orthophotos us-
ing the 6 classes defined in Section 3. We used cross
validation in our evaluation procedure: In each test run,
80 images were used for training, and the remaining
one for testing. This was repeated so that each image
was used as a test image once. The classification results
were compared with the reference; we report the com-
pleteness and the correctness of the results per class as
well as the overall classification accuracy [12].

We carried out three different experiments. In the
first experiment (NoEdge), each node was classified
solely based on the association potentials, thus setting
the interaction potential ψij(xi, xj , y) ≡ 0. In the sec-
ond experiment (MRF) we emulated a MRF using the
Potts model [7] by defining the interaction potential to
be ψij(xi, xj , y) = α if i = j and ψij(xi, xj , y) = 0
otherwise, using α = 4.6. In the third experiment
(CRF) we use our CRF model with the interaction po-
tential defined in Eq. 3. This comparison should show
the impact of the respective formulation of the interac-
tion terms. Fig. 1 shows the results for one crossroad.

The completeness and the correctness of the results
achieved in the three experiments are shown in Tab. 1.
In the first experiment (NoEdge), the overall accuracy
of the classification was 66.3%. Fig. 1 also shows the
local variation of the class labels, caused by a similar
appearance of the classes in the labels that is not com-
pensated by a smoothness term. For the second experi-



ment (MRF), the overall accuracy was 70.2%, a value
that could be increased to 72.0% in the third experi-
ment (CRF). Obviously, the smoothing achieved by the
Potts model (MRF) already has a positive impact on
the classification accuracy, also expressed in the com-
pleteness and correctness values of all classes. Con-
sidering the data in the interaction terms in (CRF) im-
proves the overall accuracy even further by avoiding
oversmoothing at region boundaries having sufficient
contrast. In particular, the classification of class as-
phalt, the one most relevant for the goal of the clas-
sification of crossroads, is improved considerably by
avoiding confusions with class car. The use of CRF
has doubled the car class correctens (please, refere to
the Tab. 1) what has visibly improved the overall clas-
sification quality at Fig. 1. The main error source was
a confusion of buildings with asphalt and of trees with
grass due to errors in the DSM caused by areas with
hardly any texture (buildings) or abrupt height changes
(trees).

Figure 1. Left to right: reference; NoEdge;
MRF; CRF. Grey: asp.; orange: bld.; dark
green: tr.; green: gr.; beige: agr.; red: car.

NoEdge MRF CRF
Cm. Cr. Cm. Cr. Cm. Cr.

asp. 70.2 84.8 72.5 86.1 81.3 84.2
bld. 72.0 84.9 76.7 87.1 81.1 82.6
tr. 74.8 62.2 81.7 64.3 80.5 61.2
gr. 51.5 70.7 53.4 77.5 59.6 67.8
agr. 65.3 51.4 71.7 59.0 49.3 69.0
car 73.7 7.8 83.0 9.5 54.6 19.2
avg. 66,3 70,2 72,0

Table 1. Completeness (Cm.) and Correct-
ness (Cr.) [%] of the results.

Finaly, we measure the perormance of our CRF en-
gine. In Tab. 2 timings for the different steps of our
algorithms are given. The training step includes train-
ing on 80 crossroads, as other speps are given for one
crossroad.

6 Conclusions

In this paper, a method for the classification of cross-
roads using CRF was proposed. It considered 3D infor-
mation in the form of a DSM generated from multiple

step NoEdge MRF CRF
training 5,7 5,7 9,0
buiding the graph 0,3 0,4 0,4
decoding 0 13,3 13,4
total 6,0 19,4 22,8

Table 2. Timings [sec] for an Intel R© Core
TM

i7 CPU 950 with 3,07 GHz.

overlapping aerial images and free from dynamic ob-
jects. Distinguishing 6 classes relevant in the context of
crossroads, an overall accuracy of about 72.0% could
be achieved. The main error sources were the errors in
DSM generation. The method described here is only a
first step in a project aiming at a precise delineation of
3D road outlines. In the future we want to improve our
method by using an improved CRF structure, consider-
ing the 3D structure of the scene also in the structure of
the CRF graph. Furthermore, better models for the as-
sociation and interaction potentials are required, as well
as an integrated method for training.
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