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ABSTRACT

For the automatic interpretation of remote sensing data and maps prior knowledge derived from a GIS and
general knowledge about the properties of the scene objects, such as form, size and texture, can be used
to preset constraints for the interpretation process. The image primitives to be interpreted are extracted by
image processing algorithms which need in most cases a number of parameters. Due to varying image quality,
accuracy etc. these parameters have to be adapted iteratively to the data to get appropriate results. This paper
presents a knowledge based interpretation system which uses semantic nets for knowledge representation
and an adaptive image processing system based on agents. The agent system adapts the parameters of the
segmentation algorithms automatically and learns, which algorithm is suitable for the current data and the
given task and which initial parameter values are reasonable. Two examples demonstrate the applicability of
the system for different tasks, the interpretation of moorland in aerial images and the extraction of roads from
topographic maps.

1 INTRODUCTION neous for example due to noise, and varying illumi-
nation or because object boundaries do not coincide
with the luminance contours in the image. In order to
solve that problems and also to interpret more com-
plex object classes additional knowledge has to be
used. Additional knowledge about Moorland can be
the knowledge which results from certain conditions
that people must observe, if they work on those ar-
eas. These conditions make sure that the moor area
will be protected. Some areas may only be cultivated

The automatic interpretation of remote sensing data
and maps represents a major topic of Photogram-
metry and Cartography. In Photogrammetry the au-
tomatic interpretation is needed for the identification
of objects and areas in remote sensing data in or-
der to observe certain areas or to create or update
topographic and user specific maps. One applica-
tion is the observation of environmentally sensitive

regions, such as moorland. The usual approach for
such problems were data driven multispectral clas-
sification methods up to now. But classification ap-
proaches work only for a limited number of object
classes. Such object classes have to be homogenous
regarding colour or texture. Further the results of data
driven image processing algorithms are often erro-

during fixed periods, which are determined by admin-
istrative authorities. Further knowledge can be the
knowledge about the structures, which can be found
in moor areas like tracks or vegetation.

In Cartography the automatic interpretation is needed
for different tasks. One is to analyse topographic
maps in order to obtain information for the automatic
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generation of maps from a digital landscape model.
Further the interpretation of the topographic map
TK25 could be used for an integration of user specific
data into the DLM25, because the user specific data
is usually based on the TK25. After creating the con-
nection between the DLM25 and TK25 by analysing
the map, the connection can be reversed for the in-
tegration of user specific data. A third application is
the recognition of long term land use changes by in-
terpreting old maps, created at different epochs. The
additional knowledge used for these tasks can be the
knowledge about the structure and colour of signa-
tures and their relations in maps.

A modern system for image analysis has to use ad-
ditional knowledge about the scene objects in gen-
eral and/or specific knowledge about the observation
area like the data of a geoinformation system (GIS).
The interpretation results can be further improved by
exploiting the data from different acquisition epochs.
The required flexibility for the automatic interpretation
can be achieved using a knowledge based approach
which separates the knowledge from the control of
the scene analysis. By exchanging the knowledge
base the system can be adapted easily to varying ap-
plication tasks. The knowledge is used to formulate
constraints for the object extraction process and for
the interpretation of the image features.

For the interpretation of aerial images and maps we
use the knowledge based image interpretation sys-
tem AIDA. It generates a symbolic scene description
by assigning semantic meanings to extracted image
primitives. Similar to the system ERNEST [Nie90] it
formulates prior knowledge about the scene objects
by means of semantic nets. In addition the control
knowledge is represented explicitly by rules. The sys-
tem integrates data from a GIS and combines infor-
mation from multitemporal images.

For the segmentation of the image data an adaptive
image processing systemis used. According to a task
description given by the semantic net the system se-
lects a suitable segmentation algorithm. The parame-
ters are adapted automatically until the segmentation
results coincide with the task description as well as
possible. Finally the optimal results are returned to
the interpretation system.

In the following sections we describe the knowledge
based image interpretation system AIDA (section 2)
and the adaptive image processing module (sec-
tion 3) based on agents. In section 4 we treat the use
of these systems for the interpretation and monitor-
ing of moorland, in section 5 for the interpretation of
topographic maps.

2 KNOWLEDGE BASED INTERPRETATION
SYSTEM

For the automatic interpretation of remote sensing
images the knowledge based system AIDA [Liedtke
et. al. 1997] has been developed. The system strictly
separates the control of the image analysis process
from the semantics of the scene.

2.1 Knowledge Representation

The knowledge representation is based on seman-
tic nets. Semantic nets are directed acyclic graphs
and they consist of nodes and edges in between. The
nodes represent the objects expected in the scene
while the edges or links of the semantic net form the
relations between these objects. Attributes define the
properties of nodes and edges.

2.1.1 Nodes

The nodes of the semantic net model the objects like
frames [Minsky, 1975] of the scene and their repre-
sentation in the image. Two classes of nodes are dis-
tinguished: the concepts are generic models of the
object and the instances are realizations of their cor-
responding concepts in the observed scene. Thus,
the knowledge base which is defined prior to the im-
age analysis is built out of concepts.

During interpretation a symbolic scene description is
generated consisting of instances. An instance is a
member of a search node wich is a consistent (par-
ticular) interpretation of the image and can have the
following states:

e hypothetical instance: the first vacant instance of
a concept in the search node.

e partial instance: not all obligatory parts and con-
crete nodes are complete.

e complete instance: all attributes are set and all
obligatory parts and concrete nodes are com-
plete.

e missing instance: falsification of an instance.

The object properties are described by attributes at-
tached to the nodes. They contain an attribute value
which is measured bottom-up in the data and a range
which represents the expected attribute value. At-
tribute values are transformed e.g. from world units
like meters to image units like pixels. Expectations
about object properties are translated into a task de-
scription for the adaptive image processing module
which is described in section 3. The semantic net
uses the segmented image primitives and assigns a
semantic meaning to them.
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2.1.2 Relations

The relations between the objects are described by
edges or links forming the semantic net (Fig. 1). The
specialization of objects is described by the is-a re-
lation introducing the concept of inheritance. Along
the is-a link all attributes, edges and functions are in-
herited to the more special node which can be over-
written locally. Objects are composed of parts repre-
sented by the part-of link. Thus the detection of an
object can be simplified to the detection of its parts.
It is possible to differenciate between optional and
obligatory parts. The transformation of an abstract
description into its more concrete representation in
the data is modeled by the concrete-of relation, ab-
breviated con-of. For example a road in the scene
layer is presented as stripe in the image layer.

Image processing algorithms supply objects and
properties about them. To integrate this information
the data-of link is realisied. Attributed relationen such
as neightborhood can be formulated by the att-rel
link. For example a street is represented in an image
as a lot of stripes which only have small distances
between a couple of stripes.

Concept Net Search Node with Instances

scene layer a)

part-of | cdpart-of (opt)

street segmen|

con-of

con-of

data-of

connected-with (opt])

3D layer

sensor layer

parallel edgeg

Figure 1: Semantic net for road detection (part)

This relation allows to structure the knowledge in
different conceptual layers like for example a scene
layer and an image layer. Based on this knowledge
representation scheme a common concept has been
developed to distinguish between the semantics of
objects and their visual appearance in different sen-
sors. In Fig. la you can see the knowledge base
which is represent as a net of concepts. The symbolic
scene description for an image is examplary shown in
Fig. 1b which show a search node and the contain
instances. Furthermore domain specific knowledge
like GIS data can easily be integrated to support and
strengthen the interpretation process. An example of
a semantic net for the interpretation of moorland is
described in section 4.

2.2 Control of the Scene Analysis

To make use of the knowledge represented in the se-
mantic net control knowledge is required that states
how and in which order scene analysis has to pro-
ceed. In principle two approaches of analysis strategy
are possible:

e Bottom-up: group and interpret the results from
the image analysis.

e Top-down: try to find the objects which are ex-
pected from the knowledge base in the data.

During the analysis this two strategies are alternat-
ing. On the other hand it must be possible to handle
alternative interpretations.

2.2.1 Rules

The control knowledge is represented explicitly by a
set of rules. Each rule ist composed of a condition
and an action part. The condition checks for each in-
stance the actual state of this instance and the neigh-
boured nodes. The rule for instantiation for exam-
ple changes the state of an instance from hypothesis
to complete instance, if all subnodes which are de-
fined as obligatory in the concept net have been in-
stantiated completely. If an obligatory subnode could
not be detected, the parent node becomes a miss-
ing instance. An inference engine determines the se-
quence of rule execution.

2.2.2 Judgement

Whenever ambiguous interpretations occur they are
treated as competing alternatives and stored in the
leaf nodes of a search tree. The best judged inter-
pretation is selected for further investigation. Using
a mixed top-down and bottom-up strategy the system
generates model-driven hypotheses for scene objects
and verifies them consecutively in the data.

The range of each instance attribute is predefined
and/or calculated during the interpretation. For each
attribute a value and range computation function has
to be defined. A judgement function computes the
compatibility of expected range and measured value.

To choose the best search node from the search tree
for the next step an A* Algorithm is used. In the next
we explain how to calculate the assessment for the
A* Algorithm from the actual attribut values and the
expected interval for this value. In this case we must
deal with uncertainty and imprecision data. For exam-
ple:

e A proposition like the node street is uncertain if
it can not be classified clearly.

e The value of the attribute road width is imprecise
if it possesses no accurate value.

The possibility theory [Dubois, 1988] allow to handle
uncertainty and imprecision.
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Modelling of  Uncertainty The  Dempster-  Combination of Information The judgement of all
Shafer [Shafer 1976] theory devided for each instances of one search node supplies the valua-

proposition e the interval [0..1] into three intervals
(Fig. 2). These three intervalls necessity N (e),
necessity of the contrary proposition N(—-e) and the
ignorance © describe the uncertainty of a proposi-
tion. If no knowledge about the proposition e exist
N(e) and N(—e) are zero. The posshility P(e) is
given by:

P(e) =1— N(—e)

During the analysis each measurement decrease the

0 1
N(e) \ e N(-e) |

P(e)

Figure 2: Necessity N (e) and Possbility P(e)
ignorance.

Modelling of Imprecision Imprecision can be
modeled with fuzzy sets [Zadeh, 1979] which de-
scribe the membership of a value z to the hypothe-
sis H with a function in the interval [0..1] (Fig. 3). A
certain membershipvalue « is interpreted as possibil-
ity p(a) that a proposition z possesses the value a is
true for the assumption z is H.

The combination rule that is defined for fuzzy sets
allow to calculate with imprecise attributes. For an
imprecise hypothesis H and a given imprecise mea-
surement E the possibility and necessity is given by:

P(H|E) = sup min(Py (x), Pe (x)

N(H|E) = mlg)f( max(Pg(z),1 — Pg(zx))

M ()

1 R
P(HIE) \/

H ()
1-Pg

1
Ry X . /
N(HIE)
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Figure 3: Computation of possibility P and necessity
N of a hypothesis H for a given evidence E

X

tion for it and the judgement of one instance results
from its actual attribute values. To combinate this sev-
eral values two different cases can be note. The first
is that the values have a complementary character
and second the character is complete. The necessity
N (e) and the possibility P(e) for complementary val-
ues i are given by:
N(e) = min N (e;)

P(e) = miin P(e;)

The corresponding approach to compute the joint ne-
cessity N (e) of redundant sensors from the maximum
of the cues fails if the sensor information is in con-
flict, i.e. one suggests e and the other —e. In this case
N(e)+N(—e) < 1is not guaranteed. To consider con-
trary information the cues of redundant sensors are
combined similar to Dempster’s rule of combination.
All combinations of sensor information that support
the proposition e are summed up (black rectangles
in Fig. 4). The sum is normalized by the sum in the
denominator of all combinations that are not contra-
dictory (all but white rectangles in Fig. 4). The combi-
nation is associative and commutative. Hence it can
be written for two sensors without loss of generality.

Ny(-€)

R(®)

Ny(€)

N,(e) N, €)
R

Figure 4: Combination of compet values

Ne) = Ni(e)Py(e) + Na(e)Pi(e) — Ni(e)Na(e)
o 1-— N1 (E)Ng(ﬁe) — Nl(ﬁe)Ng(e)

P(e) =1 — N(-e)
2.3 Extension to Multitemporal Images

Applications like change detection and monitoring re-
quire the analysis of images from different acquisition
epochs. By comparing the current image with the lat-
est interpretation derived from the preceding image
land use changes and new constructions can be de-
tected. Prerequisite for this is the possibility to save
scene descriptions in form of instantiated semantic
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nets and to load and reuse them as expectation for
the next image. To increase the reliability of the inter-
pretation the knowledge about possible state transi-
tions between two time steps should be exploited. For
the representation of these state transition diagrams
in the semantic net the different states are modelled
by concept nodes. They are connected by a new rela-
tion: the temporal relation. It is used to model the pos-
sible or most probable state transitions within a time
step. For each temporal relation a priority can be de-
fined in order to sort the possible successor states by
decreasing probability. As states can either be stable
or transient, the corresponding state transitions differ
in their transition time which can be also specified in
the temporal relation.

During scene analysis the state transition diagram is
used to generate hypotheses for the next observation
epoch. For each of these possible state transitions a
hypothesis is generated. All hypotheses are treated
as competing alternatives represented in separate
leaf nodes of the search tree. Interpretation contin-
ues using the next image in the chronological order.
An example for the exploitation of a state transition
diagram is outlined in section 4.

3 AGENT SYSTEM FOR ADAPTIVE IMAGE
PROCESSING

The term agent is known from the Al (Artificial In-
telligence) and describes autonomous working units
[Newell, Simon 1972]. Agent technology is one of the
fastest growing areas of research and new applica-
tion development. Agents are used in almost all appli-
cations that claim some intelligent functionality or will
perform tasks automatically. Jeffrey [Jeffrey, 1997] of-
fers a classification of agents based on the following
characteristics.

1. The functionality of the individual agent e.g.:

e a simple sensor / actor system like a func-
tion

a function that can distinguish different situ-
ations

autonomic systems with flexible behavior

learning and reflexive agents

collective working and collaborative agents
2. The communication among the agents.

e communication only between two agents
e communication via a blackboard
between the

e variable communication

agents

3. The location of the agents

e the whole system runs only on one com-
puter

e a distributed system on different comput-
ers/operating systems

e mobile agents that can change their loca-
tion

In our application the task of the agent system is the
automatic parameter adaptation for remote sensing
data interpretation. The semantic net or an user sup-
plies a task description formulating the goals for the
image processing operator and information about the
images used. The goals refer to the features of the
image processing results e.g. the features of the seg-
mented areas. Necessary information about the im-
age are for example resolution and sensor model.

Another requirement of the agent system is its learn-
ing ability. The system should learn which image pro-
cessing operators are suitable for which tasks. Fur-
ther the favorable start parameters for the image op-
erators should be learned to speed up the adaptation
process.

In the following, the design of the agent system and
the parameter adaptation for the image operators is
presented, focussing on the information required for
adaptation and its connection. As operators we use
the tools from the Khoros [Khoros, 1997] system.

3.1 Design of the Agent System

The agent system is implemented as a distributed
system with learning and reflexive agents under
CORBA (Common Object Request Broker Architec-
ture). CORBA is the specification of the interfaces
and architecture of the ORB (Object Request Broker)
by the OMG (Object Management Group).

One agent, the main or client agent represents the
interface to the semantic net or an user and commu-
nicates with the other agents, called server agents.
Each server agent contains an image processing op-
erator and an adaptation unit for this operator.

The structure of the agent system design is depicted
in Fig. 5. The ORB manages the communication be-
tween the agents and provides basic services like
name service and trading service.

3.2 Adaptation

Each server agent contains one image processing
operator which usually has a number of parameters.
With different parameter settings different results are
returned from the operator. The goal of the adapta-
tion is to find the parameter set that provides the best
result. To determine the best result the features of the
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Figure 5: Agent system design

task description:
requested
area features

- sensor:
segmenting segmented extraction of
operator image features
adaption loop

result

adapt
parameter

Figure 6: Parameter adaption

segmented image are calculated and compared with
the task description.

The adaptation of the parameters for the image pro-
cessing is based on the iteration shown in Fig. 6. The
image processing operator is applied to the input im-
age with the predefined start parameters. Then the
resulting image is compared with the given task de-
scription according to the features of the areas found.
The parameters are adapted by a set of rules and the
calculation is repeated. For each operator the rules
must be supplied by the user. This iteration continues
until the optimal result has been found [Rost, Munkel
1998].

3.3 Parameter Adaptation

The set of possible goals consists of given values for
the attributes of the extracted regions. These are:

area size area count
compactness convexness
ratio of holes texture
roundness rectangularity
length radial ratio

These measures are modeled according to [Rosen-
feld, 1976] and [Abmayr, 1994] and they are normal-
ized to the range of [0..1]. The goal value of one at-
tribute can also be given as a range. The importance
of an attribute is set by means of the interval width.
A predefined attribute range of [0..1] indicates for ex-
ample that the value of this attribute is irrelevant for

the given task. The narrower the range, the more im-
portant the attribute is.

3.4 Attribute Range

To describe a segmentation result either the attributes
of all segments are averaged or only the best seg-
ment for the adaptation is used (Fig. 7). In this way
for example the following tasks can be formulated:

1. Find a round object whose area size should be
within a default range.

2. Find areas as rectangular as possible (man
made) and larger than a minimum size.

actual value
0*1
minimum desired value maximum desired value

Figure 7: Attribute range design

3.5 Cooperation

Cooperation means to process a task in common [Al-
bayrak, 1993]. This cooperation is implemented as
a contract negotiation in which the client agent ne-
gotiates with potential server agents, the so-called
contract-net procedure [Davis, 1988]. Three steps of
negotiation are distinguished in the presented agent
system:

1. The advertisement of a global task. In this step,
the agents unsuitable for the task are excluded
from the following negotiations.

2. The remaining agents receive information about
the data and the goals of the operation to esti-
mate their suitability to solve the task.

3. In the last step, one or more agents are in-
structed to process the task.

3.6 Learning

The basis of the learning procedure is the above
mentioned set of negotiation functions between the
agents. The aim of the learning procedure is to orga-
nize the behavior of the agents in such a way that the
task given to the agency can be processed as well
and as specifically as possible.

Learning within the agent system requires two steps
to be carried out, the selection of a suitable image
processing operator and a reasonable initialization of
the parameters to be adapted. In order to accomplish
these tasks the described procedure of the contract
net is extended in two aspects:
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1. The acquisition of credit values in accordance to
the quality of an agent to solve the specific tasks.

2. Selection and activation of agents as contractors
according to their credit values.

Consequently the result of learning is a more specific
selection of the contractors but also a faster adapta-
tion of the parameters for the image processing by
use of a data base. The agents learn for which tasks
they are suitable and how to solve known problems.
An agent learns its task specifically by using a credit
vector.

For the automatic acquisition of these credit values,
the results supplied from an agent are matched with
the required goals. This comparison describes the
ability of the agent for the current task and is stored
in the credit vector. The credit vector consists of the
following four entries:

1. order count: the number of tasks for the agent
and/or an agency.

2. work count: the number of tasks, that are pro-
cessed by the agent and/or an agency.

3. success count: the number of tasks which are
processed successfully by the agent or an
agency.

4. confidence: this value represents a kind of self
appraisal of the agent and/or of the agency in
solving the current task. This value consists of
the current setting of a task (sensor type and
ground resolution) and the previously mentioned
credit values.

If the server agent has already processed tasks with
different goals, it selects the credit vector which is
most similar compared to the current task. To choose
this vector the ratio of the agreement and the differ-
ence to the current task is computed. For initialization
the stored parameters from the most similar task are
used as start parameters.

4 INTERPRETATION OF MOORLAND IN AERIAL
IMAGES

This section describes the use of the knowledge
based interpretation system in order to do a moor in-
terpretation. In section 4.1 we will describe briefly the
prior knowledge we used for interpretation of moor-
land, and in section 4.2 the further input data. The
conversion of prior knowledge into our knowledge
based system as semantic nets and the interpreta-
tion procedure itself will be shown in 4.3, the results
in section 4.4. The concept to extend the system into
a multitemporal interpretation and further results will
be described in section 4.6.

4.1 Prior Knowledge

Originally, moors were upland moors. In Germany
these have practically vanished. Today mostly grass-
land, forest and area of regeneration or degeneration
are found in the former upland moors.

In most cases parts of moorland are used for peat
extraction. Degeneration is the state before peat ex-
traction takes place. For this purpose the ground must
be drained by means of ditches. Then peat extraction
is possible. Usually harvester machines are used. In
aerial images the use of the machines can be rec-
ognized by tracks. After peat works have finished,
a regeneration of the moorlands will begin. In most
cases people will simply stop working on the land and
leave it to regenerate, which eventually will result in
increasing vegetation. Hence in this state of land use
vegetation can be found on these areas as well as
tracks from the harvester machines from the state be-
fore. Some areas in moors have a higher level of pro-
tection. In such areas peat extraction is not allowed.
Works in this areas are only allowed if they have the
goal of regeneration. [Gottlich, 1990]

4.2 Input Data

Our test area is the moor area near Steinhude in
Lower Saxony. We work with aerial images with a res-
olution of 0.5m/pel. The main input sources are CIR-
images, but we also tested the results with grayscale
images. The reason is that although colour images
have more usable information, most recorded aerial
images are grayscale images.

The second input source is a label image. In this
step we presume to have the segment borders. This
follows from the fact that a biotope mapping is per-
formed at least one time for every moor area in Ger-
many by ground survey. This is also prior knowledge
we use in our system. For this we use a label image
based on a biotope mapping. The label image masks
the different segments of the aerial image, which is to
be interpreted.

4.3 Interpretation with Semantic Nets

We use the knowledge based system with the explicit
representation of prior knowledge, as described in
section 2, to interpret the regions in the moor area.
Therefore, the prior knowledge about the relevant
area is formulated in a concept net. Fig. 8 shows a
simplified version of the concept net.

We determined four states of land use for moorland:
forest, grassland, area of de-/regeneration and area
of peat working. The states area of degeneration and
area of regeneration are combined, because their
distinction in aerial images is very difficult. As shown
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Figure 8: Concept net for the interpretation of moor-
land

in Fig. 8 we distinguish two layers of abstraction in the
concept net: a scene layer and an aerial image layer.
In the scene layer the different states are described
with their obligatory parts. E.qg. the state area of peat
working has on the one hand harvester tracks, on
the other hand no vegetation density. The state area
of de-/regeneration has also harvester tracks in one
part, but the second part is mid vegetation density.
The nodes in the second layer, the aerial image layer,
describe the depiction of the scene layer nodes, the
land use states, in aerial images and their properties.
The nodes describe the structures and colours to be
looked for, if a state is to be assigned to a segment.
At the bottom of Fig. 8 segment analysis operators
are shown. Every node at the bottom of the aerial im-
age layer has access to a special operator. The task
of the respective operator is to verify the meaning of
the node for a particular segment.

The interpretation process is called instantiation. To
show the instantiation process in our case, it is de-
scribed in the following. It starts with a start node in
the instance net. According to the strategy and its pri-
ority of rules the instantiation proceeds in a particular
order along the relations postulated in the concept
net, until no more rules can be applied and the in-
stance net is complete.

Here the instantiation process starts with the creation
of a hypothesis of the concept moorsegment. At this
point one segment is taken from the label image. The
interpretation for this segment will now be performed.
As shown in Fig. 8 there are four different possibilities
of interpretation (states) for the segment. These pos-
sibilities exclude each other and therefore compete
with each other. The first state to be verified is area
of peat working: A concept node area of peat work-
ing will be created. Two obligatory parts of this node
have to be present: harvester tracks and no vege-
tation density. This leads to the top-down instantia-
tion of the concept harvester tracks along the part-

of relation. The concretisation of harvester tracks is
parallel lines, which also leads top-down to a cre-
ation of a hypothesis parallel lines. Now the bottom
layer is reached and this hypothesis has to be veri-
fied. The node calls a special segment analysis oper-
ator. The operator examines the aerial image within
the given segment and returns whether parallel lines
were found or not. If the result is positive the operator
returns a certainty to the node, which describes the
quality of the result, and then the instance node par-
allel lines changes its status from hypothesis to com-
plete instance. This leads bottom-up to a complete in-
stantiation of the node harvester tracks. In the same
way the second obligatory part of the node area of
peat working will be verified and for the second ver-
ification also a certainty will be determined. Now all
obligatory parts of area of peat working are present
and the node is instantiated completely. Also a cer-
tainty for this node will be computed from the nodes
below. The result is a possible interpretation of the
moorsegment with a certainty value. If the certainty
is not good enough the other competitive interpreta-
tions have to be verified in the same way.

4.4 Result of Moorland Interpretation

In Fig. 10 the result of the interpretation based on the
label image of the biotope mapping and on the CIR
aerial image of the test area (Fig. 9) is shown. The re-
sult of the interpretation reveals, that all 33 segments
were interpreted as a human operator would interpret
them using only the aerial image without stereo and
ground truth information.

Figure 9: Aerial image of the used test area

A second interesting result of the interpretation is
achieved, if we use a grayscale aerial image instead
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of a CIR aerial image. For this purpose all upper
nodes in the aerial image layer of the concept net in
Fig. 8 were removed. Hence the interpretation is only
supported by texture information. 5 of the 33 seg-
ments could not be interpreted and 4 differed from the
result shown in Fig. 10. The misinterpreted segments
were mostly small, narrow or not typical for the land
use states. This result shows, that colour information
brings in fact additional information, but for most un-
problematic regions texture information is sufficient.

Area of De-/
Regeneration

Grassland

Area of
Peat Working

Forest

Figure 10: Interpretation result of the test area

4.5 Moorland Segmentation

The assumption, that for every moorland a biotope
mapping exists is true for Germany, but not for every
country. In that case an initial segmentation is neces-
sary. For this task it is also possible to use the adap-
tive image processing system described in section 3.

For the adaptation an image processing operator
based on the split and merge procedure has been
used. In addition the course of the roads is included
in the segmentation. The adaptation goals were the
same for all the image segments. The result of the
adaptation is depicted in Fig. 11.

4.6 Multitemporal Image Analysis

The goal of multitemporal image analysis is the mon-
itoring of moorlands. We have to extend the system
described so far by multitemporal strategies. The mul-
titemporal interpretation begins with an initial inter-
pretation for the aerial images taken at the first epoch
t to be interpreted. Then the next epochs t+n have
to be interpreted in cyclical intervals based on the
results of the interpretation before. These results re-
strict the search space and lead to an improvement
of monitoring.

Fig. 12 shows an overview of the structure of the
system concept. Beginning with the part knowledge
based interpretation an initial interpretation of the

Figure 11: Segmentation result using the adaptation
with Split and Merge

segments is performed. The results are interpreted
segments of moorland. These segments are the in-
put for a prediction of state transitions.

This prediction uses prior information concerning the
possible changes. The possibilities are represented
in a state transition diagram. A description follows be-
low. The output of the prediction are predicted new
states for every segment.

Resegmentation l

A

»{ Segment Border

Multitemporal
Data

Knowledge
Based
Interpretation

P2

Predicted

new
States /

State Transition

Prediction of Diagram
State Interpreted
Transitions Segments

Figure 12: Concept net for multitemporal moorland in-
terpretation

The borders of the segments may change between
the interpretation intervals. Therefore, for the multi-
temporal approach we include a module to examine
segment splitting by segmentation. The approach of
the adaptive image processing module is described
in section 3. This approach use the information of the
predicted new states. The results of this step are up-
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dated segment borders, which are integrated into the
knowledge based interpretation for the new epoch,
just like the predicted new states and the multitempo-

ral data.
CT‘Upland Moor | ’,D
Grassland
\J

Area of Degeneration |

C;

C1

Figure 13: State transition diagram for changes in
moorland

\

@Area of Peat Working |

Area of Regeneration |

The state transition diagram in Fig. 13 describes the
most probable state transitions. Although many more
state transitions are possible there are restrictions by
law and nature (see section 4.1). This enables us to
use the restrictions in order to improve the interpre-
tation. The presented state transition diagram applies
only for the areas with a lower protection level. A dia-
gram for the areas with a higher protection level would
not have the state area of peat working because this
is not allowed.

In contrast to the concept net in Fig. 8 this diagram
contains six different states. The first state, upland
moor, is implemented only to complete the diagram.
Because upland moor does not exist anymore in the
test area it will not be used in the interpretation. The
states area of degeneration and area of regenera-
tion are now separated. As mentioned in section 4.3
their distinction in aerial images taken at one epoch
only is very difficult. But in a multitemporal interpre-
tation with the prior knowledge described in the dia-
gram the development of the different segments can
be used also. For example given an area of peat
working the system will know, that this segment has
passed the state area of degeneration, and if in a new
epoch an operator will find for example vegetation,
the only states can be area of regeneration or forest.
Every link in the state transition diagram has a prior-
ity, which describes the probability of the state tran-
sitions. This value affects the order in which the dif-
ferent state transition hypotheses will be verified. As
shown in Fig. 13 every state has a transition link back
to itself. This is in each case the link with the highest
probability. Consequently for every new epoch this is
the first transition concept to be verified.

In Fig. 15 a result of the usage of the state transi-
tion diagram is shown for two grayscale aerial images
taken at two epochs. For the first epoch the aerial
image were divided into three segments. For every
segment the system determined the state transition.
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Scene- artof
Layer
Moorsegmerjt
is-a \ is-a
is-a f|s-r:1 A
Area 0 A F Y i
ForesfGrasslan ; rea of reaof
part-of Relqenergnol Degeneratiof) Peat Working
rt-of
part-of part-of art-onPart-ol Saronpart-of
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con-of] \\Con_of con-of f con-of
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Figure 14: Extended concept net for multitemporal in-
terpretation

The semantic net we used for the multitemporal inter-
pretation is a refinement of Fig. 8 and is depicted in
Fig. 14. In addition to the separation of the states area
of regeneration and area of degeneration the state
area of degeneration has also the description high
homogeneity, because this is also a possible appear-
ance of this state.

1988
Area of Forest Area of Area of
peat working regeneration degeneration

Figure 15: Usage of state transition diagram for mul-
titemporal interpretation

The lower image on the right side of Fig. 15 is the re-
sult of the resegmentation. The resegmentation was
carried out for every segment of the upper right im-
age in Fig. 15 seperately by the agent system as de-



Knowledge Based Interpretation of Objects in Topographic Maps and Moorlands in Aerial Images 35

scribed above in the overview of the whole system.
The optimization was applied for the parameters con-
vexness, rectangularity and area size.

The reduction of the search space for the possible
successor states leads to a correct interpretation of
the segments. For segment 1 a transition from area
of peat working to area of regeneration is stated us-
ing the knowledge about the previous land use of the
segment. Without using this prior information the sys-
tem could not distinguish the states grassland and
area of regeneration in grayscale images because
both states are also characterized by a high homo-
geneity. For segment 2 the land use state changed
from area of peat working to forest although there is
no direct state transition between them represented
in the state transition diagram. Due to the elapsed
time of 13 years the state area of regeneration was
not observed. But using the knowledge about the
mean transition times the system also generated the
hypothesis for forest which was verified successfully
for segment 2.

In section 2 the tools for creating multitemporal inter-
pretations in semantic nets were described. In the fol-
lowing the realization for the present case using these
tools will be shown. We described above the overview
of the system concept in Fig. 12. For the interpreta-
tion we have to implement the part for state prediction
and the state transition diagram into the semantic net,
described in section 4.3.

The semantic net used for this purpose takes advan-
tage of temporal links in addition to the other one
shown in Fig. 14. These links will be included for the
interpretation of the next epoch (t+1) after the com-
plete interpretation of the initial epoch t. During the
interpretation of every segment with a particular state
several hypotheses will be created along the tempo-
ral links. These hypotheses exclude each other. Ac-
cording to the priorities the verification of the differ-
ent state transition hypotheses will be processed in
a particular order. The search tree splits (see sec-
tion 2.2). In case of a good result of a verification,
the other competitive hypotheses will not be verified
anymore. At the end of the instantiation for t+1 all in-
stance nodes of the interpretation for the time t will
be removed, and the interpretation will continue for
t+2 in the same way.

5 INTERPRETATION OF TOPOGRAPHIC MAPS

The interpretation takes advantage of data from a
geoinformation system (ATKIS) which is used as a
priori knowledge for the further analysis of the scene.

For the knowledge based interpretation of the map, a
model of the landscape is created that represents the
different shaping of objects in the ATKIS data model
and in the map.

In the first step a scene description is derived from
the GIS data. This initial scene description is then
used as a priori knowledge for the interpretation of the
map. The resulting scene descreption contains both,
objects from the GIS and from the map as well as the
relations between them. Fig. 16 shows the architec-
ture of the interpretation system.

In this paper we will focus on the recognition of roads.
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Figure 16: Architecture of the Interpretation System

5.1 Input Data and Preprocessing

5.1.1 ATKIS

The a priori knowledge about the landscape is
derived from the “Authoritative Topographic Car-
tographic Information System (ATKIS)” [Grinreich,
1992], which has been developed by the German
state Ordnance Surveys. ATKIS data is available in
all states of the Federal Republic of Germany. Here
the Digital Landscape Model (ATKIS DLM 25) is used,
which contains objects that correspond to the con-
tents of the TK25.

In ATKIS the surface of the earth is divided into ob-
jects that are represented as points, lines and areas.
The definition of the objects is described in a hierar-
chically structured feature catalogue. On top of the hi-
erarchy the objects are divided into domains of object
classes, e.g. hydrography, transportation and vegeta-
tion. These domains are distinguished by groups, e.g.
road traffic and rail traffic, which are finally divided
into object classes, e.g. road and path. Each object is
assigned to exactly ine object class. A more detailed
description of the objects is realized by attributes. For
instance, an object of the object class road owns the
attribute motorway or federal road.

Depending on the topographic structure an object is
divided into one or more parts. Attributes can be as-
signed to the whole object or to its parts. The geomet-
ric information (point, line or chain, area) is attached
to the object parts. Topological relationships like the
connection between node and edges of the road net
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are not stored explicitly, but the rules for building ob-
ject parts ensure that they can be obtained by iden-
tical nodes, e.g. crossroads, or lines, e.g. confluence
of rivers which are stored as areas. Another spatial
relationship the overpass/underpass reference is at-
tached explicitly to the object part that is above or
below another one.

5.1.2 Topographic Maps

The maps to be interpreted are taken from the Ger-
man official map series 1:25000 (TK25), which is pro-
duced for about 100 years. Therefore it is an impor-
tant source for the detection of long term land use
changes.

As data origin digital raster data of colour separated
layers is used. The data is vectorized and attributes
like line width and layer are attached. Furthermore
morphological operators are used to vectorize the
road middleaxes. In the black layer the areas for po-
tential buildings are created. The vectorized and at-
tributed map data is then stored in a GIS, together
with the ATKIS data.

5.1.3 Connecting a GIS to the Interpretation Sys-
tem

In order to enable the interpretation system to access
the ATKIS and map data during the interpretation, a
guery interface to the GIS is implemented.

5.2 Knowledge Representation

Fig. 17 shows a model for roads in the form of a se-
mantic net. In the scene layer the transportation is
divided into road traffic which consist of roads. These
relations are represented by part-of links. In ATKIS
a road is simply an ATKIS-Road, which can be ob-
tained directly from the GIS. Because in ATKIS a road
is divided into object parts, we describe a road in the
map layer as a road segment. The different shapings
of a road in ATKIS and in the map are represented
by con-of relations. Each road segment consists of
at least one middleaxis and possibly additional con-
nected middleaxes. The connection is represented by
an attributed relation. Furthermore the road segment
has two context dependend parts, a left and a right
road signature.

5.3 Initial Scene Description

To derive an initial scene description from ATKIS
data, hypothetical instances are generated top down
for all concepts, starting with Transportation. The
node ATKIS-Road has a data function, which returns
exactly one free ATKIS-Road object from the GIS. If
the function successfully returns an object, the status

Scene-
Layer Transportation
part-of
Road Traffic
part-of
4
con-of
ATKIS- ATKIS-
Layer Road

Road Segment
Signature L Signature R

Middleaxis

Figure 17: A Model for Roads

of the instance changes from hypothetical to com-
plete. The properties of the ATKIS-Road are propa-
gated bottom up to the node Road, and its status is
also changed to complete instance. In this way we get
a complete scene description, which contains all road
objects from ATKIS.

5.4 Extracting Roads from the Map

In a second step the interpretation is extended to map
objects. Starting with Road, hypothetical instances
for Road Segment and Middleaxis are generated.
The properties of the node Road, which were ob-
tained from ATKIS-Roads, are propagated top down.
The node Middleaxis has a data function which uses
these properties to query the GIS for a matching mid-
dleaxis from the vectorized map primitives.

In the GIS the geometry of the corresponding ATKIS-
Road is used to create a search buffer. Within the
buffer all vector primitives that match certain criterion
like width, colour and angle are selected. In order
to avoid competing hypotheses, the longest match-
ing segment is returned and the status of the node
Middleaxis is changed to complete instance. The at-
tributes of Middleaxis are propagated bottom up and
the node Road Segment is changed to partial in-
stance, because not all necessary parts have been
found until now.

Afterwards a hypothetical instance for a Middleaxis
which is connected to the first Middleaxis is gener-
ated by the attributed relation. Again a data function
is used to access the GIS and to return a middleaxis
that is inside of the buffer and is connected with the
previous one. Because due to overlapping signatures
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there may be gaps between the segments, a mid-
dleaxis is regarded as connected when it is located
within a maximum distance and the angle between
the segments does not exceed a given limit. The val-
ues depend on the type of the road. If more than one
middleaxis matches the criterion all of them are re-
turned and competing instances are created.

When all Middleaxes for a given Road Segment have
been returned, the geometry of the Middleaxes is
used to find matching Signatures with the corre-
sponding procedure. When both Signatures could be
assigned, the Road Segment is marked as complete
instance, otherwise its status is changed to missing
instance.

6 CONCLUSION

In this paper a system for image interpretation and its
application for the interpretation of moorland areas
and maps was presented. The kernel of the system
is a knowledge based image interpretation system,
which uses semantic nets for the explicit formulation
of prior knowledge about the objects in the scene.
The knowledge is structured hierarchically and rep-
resents expectations about the appearance and rela-
tionships in the images to be analyzed. The knowl-
edge based system is able to integrate GIS data and
to analyze multitemporal images.

The expectations of the interpretation system can be
transformed into a task description for a self adaptive
image processing system. An agent based system
selects a suitable image processing operator, initial-
izes and adapts the parameters of the operator itera-
tively until the segmentation results coincide with the
given task description. Attributes of the segmented
image primitives are used to define the goals and
to measure the quality of the adaption process. The
agents cooperate with each other to find the most
suitable agent to solve the given problem. By storing
a success statistic they learn their suitability for the
current task and the according initial parameters.

The system was sucessfully tested for the interpre-
tation of moorland areas. The segments given by a
biotope map were interpreted correctly in CIR im-
ages. Comparable results for greyscale images im-
proved that texture is more significant for the clas-
sification than colour. For a more precise and differ-
entiated interpretation a multitemporal approach has
been applied, using knowledge about the most prob-
able state transitions over the time.

The system was also employed for the interpretation
of topographic maps, where roads and buildings have
been extracted. A scene description derived from a
GIS is used to find matching roads in the map. The
recognition of buildings is performed data driven, be-
cause they are currently not mapped in the GIS.
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