
 

1 INTRODUCTION 

Geographic information systems (GISs) have received major attention over recent years. A 
particularly important challenge is the task of populating the GIS databases with geo-objects. 
Due to their history existing GISs are often two-dimensional. At least in urban environments, 
however, the extension to the third dimension is necessary in order to meet the users’ demands 
as demonstrated by a survey conducted under the auspices of the European Organization for 
Experimental Photogrammetric Research (OEEPE). 55 institutions – users and producers - from 
17 European countries took an active part in the OEEPE survey on 3D city models (Fuchs et al., 
1998). Applications mentioned in the survey included architecture, tourist information systems, 
the telecommunication, and the computer game industry. The analysis of a questionnaire 
answered by the participants showed that there exists a relatively high demand for vegetation 
data: currently 78 % of the producers and 71% of the users are concerned with vegetation. In 
future, the user requirements will mainly be directed towards vegetation, refer Fuchs et al. 
(1998). 

It is well known that the GIS data constitute the most valuable part of any GIS, partly because 
of the high cost involved in data acquisition and update. Therefore, major research efforts have 
been concentrated on partly, at least, automating the data acquisition. The automatic extraction 
of vector data from aerial images (also called image analysis) is one of the main research topics 
in photogrammetry and computer vision; Ebner et al. (1999) and Förstner et al. (1999) give an 
overview of its current status. About two decades ago, Rosenfeld (1982) defined image analysis 
as "the automatic derivation of an explicit meaningful description of physical objects in the real 
world from images”. Advances in technology and research will probably lead to the integration 
of image analysis and GIS into one single system, in the future this development may lead to an 
even more automated updating process of geo-data by means of imagery. 
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ABSTRACT: The automatic extraction of trees from aerial imagery in an urban environment is 
the main focus of this paper. Aerial color infrared images and a dense digital surface model are 
used as sources of information for the automatic extraction of individual trees and their 
characteristics. The strategy of our approach is to reduce the complexity of the image content by 
means of different abstraction levels. The extraction starts on a global scene level with the 
detection of hypotheses for tree and building regions, describing the coarse content of the given 
scene. The tree regions are further analyzed on the local level. Trees in the tree regions are 
detected, and a first rough estimation is made of the 3D centers of the crowns and their radii. 
For each tree the 3D position and the shape of the crown is refined at a last stage. 
The paper describes the developed algorithm in detail and proves its feasibility using real 
imagery and height data. 



In this paper we describe our current work on automatic extraction of trees from aerial CIR 
images and normalized digital surface models. Our focus on trees is motivated by the fact that 
trees constitute an important object class for applications of 3D city models (see above). For our 
work, the application consists in building a simulation system for training emergency force 
officers to better respond to crisis situations (CROSSES, 2001).  

We start with an overview of the current work about the extraction of trees from images in 
different contexts. In chapter 3 we present the employed strategy for extracting topographic 
objects from images. Then, we describe how this strategy is applied to the extraction of trees in 
an urban environment including examples of obtained results. The paper concludes with an 
outlook onto future developments. 

Regarding the terminology, we use the term image as a generic term for raster data in a 
regular grid, every pixel can have a height value or one or more reflectance values. A digital 
surface model (DSM) is an image consisting of height values including vegetation, buildings 
and other objects. A digital terrain model (DTM) consists of only those points lying directly on 
the terrain. The difference DSM - DTM is called normalized DSM (nDSM). Scene is used for 
the domain of the real world which is mapped in the images, the scene description consists of 
the instances of objects visible in the scene. 

2 RELATED WORK 

2.1 Forest 

The extraction of trees for forest inventory purposes was investigated by different researchers. 
Regarding the user requirements the height of the tree and the radius of the crown are most 
important, mainly due to the fact that the stem diameter is correlated with the height and the 
radius (Borgefors, 1999, Hyyppä et al., 2000). The stem diameter, in turn, is an economic factor 
in forest management and can also be used for visualization of the whole tree in other 
applications. Pollock (1994, 1996) proposed a generic model for a tree divided into a geometric 
part, a function for the leaf density distribution, and an illumination model. The outer envelope 
of a crown is described by a surface of second order, a generalized ellipsoid of revolution 
(GER). The GER has the following form: 

 (1) 
x, y, and z describe a co-ordinate system with the z-axis pointing up. b is the radius of the 
crown, and a is the height of the tree above the terrain. The parameter n characterizes the shape 
of the surface. Values for n smaller than 2 lead to a cone, if n increases beyond 2 the resulting 
shape becomes more and more cylindrical. The co-ordinates x0, y0, and z0, translate the local co-
ordinate system to the scene co-ordinate system, and thus describe the position of the tree in the 
scene. 

Pollock generates templates based on this geometry, the leaf density distribution, and the 
position of the sun. The templates, which are looked upon as an idealization of an image of the 
real crown, are varied by means of the parameters of the GER and matched in the image. The 
approach was tested using one channel of the Canadian MEIS II scanner, images had a ground 
sampling distance (GSD) of 36 cm. Another approach was proposed by Gougeoun (1995), also 
using similar data. Tree outlines are extracted by means of a method which interprets the 
shadow areas between the trees as valleys in the gray value distribution. In a second step the tree 
outlines are extracted more precisely with a rule based approach on the pixel level. 
Brandtberg & Walter (1998) have developed an approach for the extraction of trees from aerial 
images with a GSD of 10 cm. After a Gaussian smoothing of the image with different kernels, 
edge extraction using zero-crossings is performed in all resulting images. Valid edges are 
selected by means of their gray level curvature and length. The curvature centers of the 
extracted edges are accumulated over all used images scales and are interpreted as the centers of 
tree crowns. A region growing is performed as last step for the delineation of the individual tree. 
The same approach was also applied with good results to height data with a GSD of 10 cm 
(Borgefors et al., 1999). 



2.2 Settlement and Open Landscape 
The extraction of individual trees in urban environments is also addressed by a number of 
authors. Here the main applications are 3D city models and tree cadastre. Brunn & Weidner 
(1997) proposed to use the variance of DSM surface normals to detect vegetation regions. Laser 
scanner data and a color infrared image are used in combination by Brenner & Haala (1998, 
1999) for the classification of an urban scene. A pixel based unsupervised classification 
algorithm is employed to perform the segmentation of the image. The skeleton of each region 
classified as trees is computed, and the junctions within the skeleton are looked upon as center 
points of trees. In their work the authors show that the combination of CIR image and height 
data leads to reliable results for the detection of vegetation and buildings in an urban 
environment. However, the work is mainly focused on the extraction of buildings, vegetation is 
not treated in any great detail. 

Mayr et al. (1999) investigate the suitability of DSM data for the classification of trees, they 
use a GER, as proposed in (Pollock, 1994). The GER parameters are estimated by a least 
squares adjustment, coniferous and deciduous trees are differentiated by means of their 
geometry using the GER parameter n . The position of the tree in the scene is assumed to be 
known. Panchromatic high resolution aerial imagery, taken in spring, is used by Bacher & 
Mayer (2000) for the extraction of deciduous leafless trees in urban environments. The shadows 
of the trunks are used as hypotheses for tree positions. After line extraction, valid lines are 
selected by means of a Hough transform, then the individual branches are searched. An 
approach for the extraction of rows of trees in combination with roads in open landscape from 
color infrared images with 0.8 m GSD is described in (Heipke et al., 2000). The description for 
the row of trees is taken from a GIS data model. After a separate processing of roads and trees, 
the rows of trees are used as possible road candidates, which leads to a refinement of the road 
network. 

2.3 Consequences for our work  

Most of the authors make use of a geometric model of the tree. The 2D surrounding of the 
crown is generalized to a circle, (Pollock 1994, 1996, Mayr et al. 1999, Bacher & Mayer 2000, 
Heipke et al., 2000) or an ellipse (Brandtberg & Walter, 1998). In 3D Pollock (1994, 1996) and 
Bacher & Mayer (2000) use a GER as geometric description. Based on the presented analysis of 
the published references we have chosen to also use the GER geometric model proposed by 
Pollock (1994), and adopt the idea of template matching in an adaptive refinement step.  

Similar to Brenner & Haala (1999) we combine CIR and height data. Developments in 
imaging sensors show, that this combination of data will be available on a routine basis in the 
near future. These sensors are laser scanner combined with an optical line scanner, for example 
the Toposys II instrument (TOPOSYS, 2001), or multiple view CIR digital images in 
combination with an automatically generated DSM. 

In contrast to the work by Brenner & Haala we focus on trees in urban environments, 
motivated by the fact, that relatively little work was done in this domain up to now, and that 
there is a growing demand for 3D vegetation objects. 

3 HIERARCHICAL IMAGE ANALYSIS 

In our work the scene to be interpreted is subdivided into four super classes: settlement, water, 
forest and open landscape. These super classes can then be used as global context knowledge 
about the scene. In many GIS data models similar classes can be found as the highest level of 
abstraction in a hierarchically structured data model. An example for an object hierarchy is 
given in Figure 1, ordered by the abstraction level. The highest level of abstraction is given by 
the landscape, level 2 contains the super classes, different areas are placed in level 3, the next 
level consists of the objects and the lowest level of abstraction is given by the level of object 
components. 
 



 
 
Figure 1: Different abstraction levels in the hierarchical structure of the landscape  
 

Following a proposition made by Suetens et al. (1992), also used by Mayer (1998), the 
existing methods of image analysis can be mapped into a two dimensional solution space. One 
axis describes the suitability for complex models and the other axis the suitability for complex 
image data. Methods for processing either simple models or simple images are available. 
However, complex models in conjunction with complex image data cannot be handled 
appropriately with existing methods. Thus, a reduction in complexity is necessary. Since the 
model complexity is usually dictated by the application, only the image complexity can be 
manipulated. It can be reduced by means of a scale-space transformation (Lindeberg, 1994) and 
by a reduction of the processing domain. 

In order to solve a problem with complex models and complex images, it can be argued that 
the following hierarchical strategy is feasible (see again Figure 1): At some level L of the 
hierarchy the image complexity is reduced using a scale-space transformation. The related 
object classes of level L+1 are searched for only in the parts of the scene, in which the context –
given by the instances of the level L objects - is known. This procedure is repeated until the last 
level is reached, leading to a stepwise reduction of the complexity of the images. Therefore, 
simple object models can be applied in the actual level to be processed. The context always 
defines the domain of the scene relevant for the actual level and is also used to set initial 
parameters for the object extraction. 

4 MODELS FOR TREE EXTRACTION 

4.1 Scene description 
In this chapter we describe how the presented strategy can be used to successfully extract trees 
in aerial CIR images and height data. We present a scene description based on a semantic net 
which captures the different abstraction levels of the landscape mentioned above, additionally 
we introduce the concepts we have defined for the extraction of trees, refer to Figure 2. A Tree 
appears in different context, as part of a RowOfTrees concept in the OpenLandscape, and also in 
the context of settlement as a part of a GroupOfTrees. 
 

 
 
Figure 2: Partial scene description based on semantic nets, decomposed into sub graphs 
 



The whole graph representing the scene description can be decomposed into sub-graphs. 
These sub-graphs are the Landscape (1) sub-graph, the OpenLandscape (2) sub-graph and the 
Settlement (3) sub-graph, refer to Figure 2. The sub-graphs represent different parts of the 
landscape, but overlap where an object can appear in more than one sub-graph. In this case, 
however, the object “knows” from the context into which sub-graph it belongs. Therefore, 
models and methods relevant in this very sub-graph can be chosen for the extraction. In 
previous work we have described how the super classes of the Landscape sub-graph (1) can be 
automatically extracted from CIR images (Heipke & Straub, 1999) and how the OpenLandscape 
sub graph can be used to simultaneously extract roads and trees/rows of trees in open areas 
(Heipke et al., 2000). For the latter case we have also presented an evaluation of the achieved 
results (Straub & Wiedemann, 2000). In the research presented here we further consider the 
settlement sub-graph only. 

4.2 Geometric and radiometric model for individual trees in the settlement sub-graph  
The extraction of trees in the settlement context is based on a model, which includes geometric 
and radiometric features, as well as neighborhood relations, refer to Figure 3. Regarding the 
geometry of an individual tree we use the GER as mentioned before. The radius b is set to a 
minimum value of 2.5 m, and the minimum value for the height of the tree a is set to 5 m. The 
shape parameter n is set to n = 2 leading to a shape, which mainly fits to broad-leafed trees, as 
this is the kind of trees we expect to be found most often in images of settlement areas flown 
after the leaves have come out. 
 

 
 
Figure 3: A tree in the “real world” and the geometric parts of the concept Tree 
 

In the radiometric tree model two aspects are used, (1) we assume that a tree has a spectral 
signature different from the one of the neighboring trees, and (2) the NDVI value must be 
characteristic for vegetation. The first assumption is needed to separate neighboring trees, the 
second one to differentiate vegetation from non-vegetation areas. As in an urban environment 
the trees are often planted by humans, trees usually stand at some distance. In our model we 
assume that the distance d between trees is larger than their radius b (see Figure 3, right). 

4.3 Detection of GroupOfTrees instances in Settlement Regions 

The settlement sub-graph consists of a settlement concept as the level 2 base node, refer to 
Figure 2. Level 3 consists of three nodes, BuildingArea, GroupOfTrees and the RoadNetwork. 
In the following we will use vegetation as a material property due to its scale independency, 
therefore vegetation is not mapped into the settlement sub-graph as a concept. We start with the 
concept GroupOfTrees, which can be extracted from the scene by means of the material 
property Vegetation and the geometric property 3DObject. We use the term 3DObject for the 
objects in the scene having a height above the terrain, for example a building in contrast to a 
road. The NDVI is used as feature for vegetation, and the nDSM as feature for 3DObject, refer 
to Figure 4. The different objects are ordered by means of their concepts´ life cycle - from left to 
the right - and by the abstraction level from top to bottom. The "Material and Geometry" layer is 
used for class properties, which are independent of the abstraction levels. The “Image” layer 
contains the low-level features, which are extracted from the original image data. 
 



 
 
Figure 4: Model and sequence diagram for the extraction of trees in settlement context 
 

In order to detect vegetation in the CIR image the NDVI image is segmented into the two 
regions vegetation and non-vegetation. This segmentation is based on a histogram analysis of 
the NDVI image under the assumption that there exists a clear local minimum close to zero 
which represents the threshold necessary for the segmentation. 

In the nDSM1 GroupOfTrees are searched for as local maxima having a minimum size. The 
local maxima are easily found using a threshold of 5 m, corresponding to the minimum height 
of a tree (see section 4.2), and the resulting areas are tested for size, areas larger than one single 
tree, i. e. π (2.5m)2, are selected for further processing. After creation of the necessary features 
(marked as (1) and (2) in Figure 4), instances of the concept GroupOfTrees are generated by 
intersecting the vegetation areas with the detected 3DObjects. 

4.4 Decomposition of GroupOfTrees to individual Trees 
After the instantiation of a GroupOfTree object the extraction of individual trees is performed, 
assigned with (3) in Figure 4. A GroupOfTrees(i) region, called GOTi in the following, is 
depicted in Figure 5. GOTi consists of four individual Trees(j). The decomposition of this 
region into individual tree hypotheses is carried out by means of mathematical morphology: a 
circular structuring element SE with radius rk is created, called SEk(rk) with 
rk = 1.5 m (equivalent to 15 pixel). Then, an opening of GOTi with SEk(rk) is carried out, the 
result is assigned as γSE(k)(GOTi), following the notation proposed by Soille (1999), rk is then 
increased in steps of one pixel, and after each increase the opening is repeated. The result of 
γSE(k)(GOTi) becomes empty if rk is larger, then the largest circle which fits into GOTi. The first 
Tree(j = 1), is then instantiated with the initial values b = rk-1 at the position (x0, y0) of the center 
                                                      
1 As mentioned earlier we consider an nDSM as input to our approach. There are various methods to 
reduce a DSM to a nDSM, in general these are used for the processing of laser data to derive a DTM (e. g. 
Kraus & Pfeifer, 1998, Vosselman, 2000, Lohmann et al., 2000). A discussion of these techniques is 
beyond the scope of this paper. In order to actually produce a nDSM for our work we have adopted the 
method described by Jacobsen & Passini (2001) in which the transformation from DSM to nDSM 
involves a local analysis of the height differences of neighboring points and profiles followed by linear 
prediction. 



of gravity of γSE(k-1)(GOTi). The corresponding circular region T1 of Tree(1), is removed from 
GOTi, and in the remaining region the described operation is preformed again, as long as 
rk,j > bMIN. The result is a decomposition of GOTi into individual trees, see Figure 6. 
 

 
 
Figure 5: A GroupOfTrees object Figure 6: Individual Trees, Figure 7: Individual Trees, 
 correct position including systematic errors 
 

The removal of Tj from GOTi lead to a systematic error in position and radius of the next 
Tree(j+1), refer to Figure 7. This position error is reduced in the following step be means of the 
spectral information in the CIR image, assigned as (4) in Figure 4. The visible part of the 
concept Tree in aerial imagery is the Crown. For every Crown(j) of the corresponding Tree(j) 
two regions are defined: a circular safe region S with radius b/2 centered in (x0, y0) and depicted 
in gray in Figure 8, used for learning the characteristic spectral signature of the tree; and a 
possible region P, with a radius 1.5 b, plotted with a dashed line in Figure 8. 
 

 
 
Figure 8: Regions P, C, and S Figure 9: Feature Space Figure 10: Extracted Tree(3) 
 

We assume, that the gray values of the pixels in S are representative for the crown of the tree. 
These pixels are transformed into a feature space spanned by the gray values of the green and 
the infrared channel (Fig. 9) and the covered domain is marked as a region in the feature space. 
This region is extended by means of a morphological dilation with a small circular SE (diameter 
three pixels). All pixels in region P which fit into the extended domain in feature space are 
classified as pixels belonging to the crown, refer to Figure 10. This procedure is similar to the 
strategy which a human operator employs during multispectral classification, if the training area 
for a specific object class does not show a normal distribution for the gray values (ERDAS, 
1997). Next, the tree center co-ordinates (x0, y0) are computed as the center of gravity of all 
pixels belonging to the tree, and the radius is calculated as r² =Area / π. As a final step of our 
procedure, assigned as (5) in Figure 4, P is computed again with the refined parameters x0, y0, b 
and a template is generated based on equation (1) with n=2. This template is fitted to the DSM 
in P, which leads to the missing parameters a and z0, and the final position x0, y0. 

5 RESULTS 

The approach was applied to image and height data of a test area in Grangemouth, Scotland. 
The color infrared aerial images were acquired in summer 2000 for the IST project CROSSES. 
The image flight was carried out with 80% overlap along and across the flight direction. The 
image scale is 1:5000, which leads to a GSD of 10 cm at a scanning resolution 21µm. Based on 
these images a DSM and a true orthoimage were automatically derived by the French company 
ISTAR (Gabet et al., 1994). The orthoimage and the DSM cover an area of 4 km². A large part 



of the whole test site belongs to an industrial plant with sparse vegetation. We have selected a 
subset of the data set for our test with relatively typical suburban characteristics. One family 
houses, some larger buildings, trees and roads are visible in this subset. It is about 
2700*2300 pixels large, corresponding to an area of approximately 60,000 m², refer to 
Figure 11 for an overview of the “Grangemouth” test site. 
 

 
 
Figure 11: Overview of the test site “Grangemouth”, and enlarged subsets in different scales 
 

 
 
Figure 12: Enlarged subsets from the test area, GroupOfTrees and individual Trees superimposed 
 

For the two examples depicted in Figure 12 the small image on the left shows the surrounding 
polygon of a GroupOfTrees object with the corresponding image. The larger image shows the 
resulting individual Trees by means of a circle superimposed to the image. The first example 
shows a good case, here the trees are clearly separated, refer to Figure 12 left. In this case the 
surrounding polygon of the GroupOfTrees instance can be decomposed into circles. 
Additionally, the colors of the trees are different, too, which is not clearly visible in the gray 
value image. The resulting Trees fit the expectations, a human operator would have digitized 
them in a similar way. The second example (Figure 12, right) shows a more difficult case, here 
the trees stand close together, and the color is quite similar. Therefore, neither the first 
morphological step, nor the refinement in feature space lead to a good approximation of the tree 
position. The larger circle at the bottom contains in fact parts of several trees. 



Overall, 235 trees were extracted in the test site with the approach described above. In order to 
estimate the completeness (True Positives / (True Positives+False Negatives)) and the 
correctness (True Positives / (True Positives+False Positives)) as well as the geometric error in 
position and radius we have compared the obtained results to reference data. A completeness of 
95% and a correctness of 89% was reached, refer for example Wiedemann et al. (1998) 
regarding the quality measures. The latter were captured semi-automatically from the same 
images. A window was opened at the center co-ordinate of the tree in question, and the 
extracted tree was indicated to a human operator. He subsequently defined radius and position 
for the “reference tree”. The corresponding height value was computed automatically as the 
mean value inside the circular area at the reference position. The error in the position was 
computed as the mean value of the Euclidian distance between the automatically and the 
manually captured positions of all 235 trees. The error in the height and radius were derived 
accordingly. The mean error in the position resulted in 90 cm, the height error in 20 cm, and the 
radius error in 70 cm. Considering the results of the difficult cases these results – although 
amounting to 9 and 7 pixels for the planimetric parameters, and thus rather large values – are 
compatible with our expectations, and they are sufficient for most applications involving trees 
(Fuchs et al. 1998). Summarizing, one can say, that the method for the extraction of trees in 
urban environments leads to reliable results in the test site. 

6 SUMMARY AND OUTLOOK 

We have presented an approach for the extraction of trees from color infrared and height data in 
an urban environment for the generation of 3D city models. The approach is based on a tree 
model, using geometric and radiometric features as well as neighboring relations between trees. 
We have embedded the tree extraction into a hierarchical scene description of a landscape in 
different abstraction levels. The abstraction levels are used as a control mechanism for the 
feature extraction in order to simplify the automatic interpretation of images. The approach was 
investigated in a test site of approximately 60,000 m2 with promising results. 

The internal evaluation of the results will be the main focus of our work in the future, because 
it is seen as the most critical point in the proposed automatic system. Another point will be the 
modeling of relations between trees and other objects in settlement areas, first results of this 
work are presented in (Straub et al. 2001). 
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