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ABSTRACT:  
In this paper we present an approach for the automatic extraction of trees and the boundaries of the tree’s crowns. The approach is 
based on a multi-scale representation of an orthoimage and a surface model in Linear Scale Space. The idea of the approach is that 
the coarse structure of the crown can be approximated with the help of a sphere or an ellipsoid. This assumption is true, if the fine 
structure of the crown is ignored and the coarse structure is revealed in an appropriate level of the multi-scale representation of the 
surface model. But this scale level is unknown, because it is correlated with the unknown diameter of the crown. The proposed 
solution of this chicken-and-egg problem is to investigate a wide range of scale levels, and to select the best hypothesis for a crown 
from all these scale levels. The segmentation of the surface model is performed using the watershed transformation. The boundary of 
every crown is measured with Active Contours (Snakes). The approach was tested with surface models of different resolutions 
(0.25 m and 1 m) and different sensors, laser scanner and image matching. An overview of the approach is given in the paper and 
important points are discussed. 
 

1. INTRODUCTION 

In this paper we present a new approach for the automatic 
extraction of individual trees using a true orthoimage and a 
surface model as input data. The approach is based on a 
segmentation in multiple scales followed by an optimisation 
step using Active Contours. The mathematical reasoning is 
mainly based on differential geometry. The surface model is 
used as main source of information for the extraction of the 
individual trees, additional colour information from the 
orthoimage is used to differentiate between vegetation and other 
objects in the scene. The aim of the approach is to detect every 
tree in the observed part of the real world and to measure the 
boundary of its crown. If the positions and the boundaries of the 
visible trees are known, than the crown diameter and additional 
descriptors concerning the shape of the crown can be derived. 
The height above the ground can be estimated if the ground is 
visible close to the crown’s boundary. These parameters can be 
used to estimate the stem diameter in breast height, the 
individual surface of the crown, and the stem volume. Because 
most of these parameters are not visible in aerial imagery, they 
are usually estimated by means of statistical models (Hyyppä et 
al. 2000). 
 

 
Figure 1: 3D view of virtual trees 

 
Based on the position and the boundary of the measured trees 
one can build simple virtual trees for visualisation purposes, for 
example as additional information in 3D city models. The 

3D view in Figure 1 was generated using a scalable template1. 
The virtual trees were placed onto the orthoimage with the help 
of the position of the automatically extracted trees. The height 
of the virtual trees is assumed to be proportional to the 
measured diameter. The 3D model is an optional output of the 
algorithm which is described in this paper. 
 
In the next section of the paper a short overview is given on the 
related work in the field of the automatic extraction of trees in 
forests and settlement areas. In the main section of the paper 
describes the approach, it is divided in two sub sections: The 
first one depicts the object model for trees and the second one 
the processing strategy. In the last section we show some 
exemplary results. We close with a short summary and an 
outlook. 
 

2. RELATED WORK 

Trees are important topographic objects in different fields of 
applications. Not only ecological aspects constitute the interest 
in trees but also different economic factors. Obviously, data 
about trees play an important role in forest inventories and 
forestry GIS applications. In forest inventories trees are counted 
and parameters like height and stem diameter are measured. 
The first trial to utilize an aerial image for forest purposes was 
performed in 1897 (Hildebrandt 1987). Since that time the 
scientific forest community is working on methods for the 
extraction of tree parameters from aerial images. The early 
work was on the manual interpretation of images for forest 
inventory (Schneider 1974), (Lillesand & Kiefer 1994). The 
pioneers in the field of the automation of the interpretation task 
“extraction of individual trees from images” proposed first 
approaches about one and a half decade ago (Gougeon & 
Moore 1988), (Pinz 1989). Recent work in the field was 
published in (Pollock 1996), (Brandtberg & Walter 1998), 
(Larsen 1999), (Andersen et al. 2002), (Persson et al. 2002). 
                                                                 
1 The tree template is described in (Saint John 1997). 



 

Some of the recent publications are described in detail in the 
following section. 
 
A common element of the most approaches is the geometric 
model of a tree as it was proposed by R.J. Pollock in (Pollock 
1994) (Pollock 1996). In the following, this surface description 
is assigned as Pollock-Model, and the corresponding synthetic 
trees as Pollock-Trees. 
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The parameter a corresponds to the height, and b to the radius 
of the crown, n is a shape parameter. Two different surfaces 
which can be described with Equation 1 are depicted in Figure 
2: The left one is an example for a deciduous tree, and the right 
one for a coniferous. 

 
Figure 2: 3D visualisation of the Pollock-Model. Left: Surface 
model of a typical deciduous tree: a=7, b=3.5, n=2.0 Right: 
Coniferous tree: a=20.0; b=5.0; n=1.2. 
 
The surface of a real tree is of course very noisy in comparison 
to the Pollock-Model. This noise is not caused by the 
measurement of the surface. It is simply a consequence of using 
such a model for a complex shape like the real crown of a tree. 
But the main shape of the crown is well modelled with this 
surface description. 
 
In general, there are two possibilities to build a strategy for the 
automatic extraction of trees from the image data. The first 
possibility is to model the crown in detail: one could try to 
detect and group the fine structures in order to reconstruct the 
individual crowns. The second possibility is to remove the fine 
structures from the data with the aim to create a surface which 
has the character of the Pollock-Model. In the literature exist 
examples for both strategies: In (Brandtberg 1999) it was 
proposed to use the typical fine structure of deciduous trees in 
optical images for the detection of individual trees. It seems that 
this strategy works only for deciduous trees, the fine structure 
of a coniferous tree is not really pronounced. The other 
strategy, the removal of noise, was proposed in (Schardt et al. 
2002) and in (Persson et al. 2002). The main problem of this 
type of approach is the determination of an optimal low pass 
filter for every single tree in the image. This is a kind of a 
chicken-and-egg problem, because the optimal low pass filter 
depends mainly on the diameter of the individual tree one is 
looking for, which is not known in advance. In (Andersen et al. 
2002) the fine structure of the crown is modelled as a stochastic 
process with the aim to detect the underlying coarse structure of 
the crown. 
 
The idea of our approach is to create a multi-scale 
representation of the surface model similar to (Persson et al. 

2002). The difference to the approach of Persson et al. is that in 
our approach the scale level is not assumed to be known. We 
try to overcome the mentioned chicken-and-egg problem with a 
search of the “best” tree hypothesis in multiple scales. In 
(Brandtberg & Walter 1998) it was originally proposed to use a 
representation of the image data in Linear Scale Space for the 
extraction of individual trees. A basic idea of the Linear Scale 
Space is to construct a multi scale representation of an image, 
which only depends on one parameter and has the property of 
causality: Features in a coarse scale must have a cause in fine 
scale (Koenderink 1984). The scale space transformation itself 
may not lead to new features. One can show that a multi-scale 
representation based on a Gaussian function as low pass filter 
fulfils this requirement. In practice, the original signal ( )xf  is 
convolved with a Gaussian kernel with different scale 
parameter σ, the result of the convolution operation is assigned 
as ( ),xf σ . Small values of σ correspond to a fine scale, large 
values to a coarse scale. An extensive investigation and 
mathematical reasoning including technical instructions can be 
found in (Lindeberg 1994). 
 

3. DESCRIPTION OF THE APPROACH 

A critical point for a successful extraction of trees is the 
selection of the scale level. The reasons are: (1) The correct 
scale level depends mainly on the size of the objects one is 
looking for. In the case of trees this size can neither be assumed 
to be known a’priori nor it is constant for all trees in one image. 
The size of trees depends on the age, the habitat, the species and 
much more parameters, which cannot be modelled in advance. 
(2) The correct scale is of crucial importance for the 
segmentation. The small structures of the crown are very 
difficult to model and – except this small structures - the crown 
has a relatively elementary shape. In our approach the image is 
segmented in a wide range of scales, just bounded by 
reasonable values for the minimum and maximum diameter of a 
tree’s crown. In (Gong et al. 2002) the typical range for the 
diameter is proposed to be minimal 2.5 m up to 15 m covering 
all species of trees. In our experiments we increase the scale 
parameter in steps of about 1 m starting from 1 m up to 20 m. 
 
As input data we use a surface model and a true orthoimage. 
The ground sampling distance (GSD) of the surface model is 
0.25 m, it was produced by the French company ISTAR using 
1:5000 colour infrared aerial images acquired in summer 2000 
with a GSD of about 0.10 m, refer to (Straub & Heipke 2001) 
for details. A subset of the surface model is depicted in Figure 
3. 
 

 
Figure 3: Surface model, buildings are marked with A and trees 

with B. Three different scale levels of the marked 
subset are depicted at the right margin. 



 

 
In the following section 3.1 a detailed description of the model 
of individual trees is given. In section 3.2 the processing 
strategy for the extraction of these trees from the image and 
height data is described. 
 
3.1 

3.1.1 

Model for Trees 

Geometric Properties 
The geometric part of the model for an individual tree 
simplifies the crown to a 2.5D surface, the Pollock-Model 
(Equation 1). The parameter n can be used to define the shape 
of a broad-leafed tree with a typical range of values from 1.0 to 
1.8, and also for conifers with a typical range for n from 1.5 to 
2.5. These numerical values are based on an investigation 
described in (Gong et al. 2002). Based on the Pollock-Model 
we can derive the following features for the extraction from the 
surface model: The projection of the model into the xy-plane is 
a circle with a diameter in given range. Furthermore the 3D 
shape of the surface is always convex. 
 
The image processing is based on differential geometric 
properties. We use a profile along four tree tops to study these 
properties of the surface model if the trees stand close together, 
the normal case. Free-standing trees constitute exeptions. In the 
left part of Figure 4 four Pollock-Trees computed with a=6 [m], 
b=2 [m], and n=2.0 (1 m is equivalent to 10 pixels respectively 
grey values) are depicted.  
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Figure 4: Profile of the surface model of four Pollock-Trees, the 

location of the profile is depicted in the upper left 
corner. 

 
The profile is plotted in dark grey in Figure 4: One can see that 
the “valley” between the trees decreases from the left to the 
right. The absolute value of the gradient ( )H x∇  (black line in 
Figure 4) decreases also. Obviously this is a consequence of the 
decreasing distance between the trees, and of the crown’s shape.  
 
The surface at the tree tops has a convex shape in both 
directions, along and across the profile. Therefore the sum of 
the second partial derivations is always negative for the whole 
crown (refer to the light grey line in Figure 4).  
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At a point on the profile between two trees the partial, second 
derivative is smaller than zero along the profile and larger than 
zero perpendicular to the profile. Therefore, the Laplacian of 
the surface model ( )H x∆

(

 at these points has got normally 
higher values than at points on the crown, because both partial 
second derivatives are smaller than zero at the tree tops 
(Equation 2). These characteristics lead to local maxima 
between the crowns in )H x∆ . 

 
In the case of real data this model is only valid in the 
convenient scale level. A height profile from real data is used to 
explain the term “convenient” in this context. Two different 
Scale Space representations of the surface model ( )H x  are 
depicted in Figure 5, according to the used σ of the Gaussian 
they are assigned as ( ),H x σ  with σ values 0.5 m and 8 m. 
One can see that more and more of the fine structures disappear 
and the coarse structure is revealed with the increase of the 
scale parameter σ. 
 

( ), 0.5H x mσ =  

 

 

( ), 8H x mσ =  

 

 
Figure 5: Representation of the surface model ( )H x  at two 

different scale levels (above). The height profiles 
below are measured along the dotted line in the 
images.  

 
The height profile along the tree tops is measured along the 
dotted line which is superimposed to the surface model in 
Figure 5. The left height profile which is measured in the 
original surface model is noisy compared to the profile of the 
synthetic trees. As a result of this noise the Laplacian is 
oscillating close to zero. In the “correct” scale level for this 
small group of trees the assumptions regarding the Laplacian 
are fulfilled quite well. Similar to the profile of the synthetic 
Pollock-Trees (Figure 4) the Laplacian is negative for trees and 
positive for the valleys between them. The coarse structure of 
the crown is enhanced, and as a result the properties of the 
Pollock-Model are valid also for the real trees in this scale 
level. 
 
3.1.2 Reflectance Properties 
Vegetation has a typical spectrum of reflection in the green and 
the near infrared band of the electromagnetic spectrum of 
wavelengths. The reflection of the near infrared band of the 
solar radiation is higher for vegetation than for areas without 
vegetation and lower in the red band. Vegetation indices make 
use of this typical property. If possible, we use the Normalized 
Difference Vegetation Index (NDVI) for the differentiation of 
vegetation and areas without vegetation in the images (refer to 
Figure 6 for an example). 
 



 

  
Figure 6: Colour infrared image of trees (left) and NDVI of the 

same area, corresponding the white square in Figure 
3. 

 
The Degree of Artificiality, which is computed from the green 
and the red band (Niederöst 2000), is an alternative if the near 
infrared band is not available. A purely texture based 
differentiation of trees and buildings can also be performed if 
only panchromatic images are accessible, refer to (Straub 
2002). 
 
3.2 Processing Strategy 

The basis of our approach is the Linear Scale Space Theory, the 
Watershed transformation is used as segmentation technique, 
Fuzzy Sets for the evaluation of the segments and Snakes for 
the refinement of the crowns outline. The basic ideas of the 
Linear Scale Space Theory were originally proposed in 
(Koenderink 1984), and were worked out in (Lindeberg 1994). 
The Watershed transformation for the segmentation of images 
was introduced by (Beucher 1982). Details about the watershed 
transformation can be found in (Soille 1999). Fuzzy Sets 
(Zadeh 1965) are used, because they are a “very natural and 
intuitively plausible way to formulate and solve various 
problems in pattern recognition.” (Bezdek 1992). Snakes, or 
Active Contour Models, were introduced in (Kass et al. 1988), 
they “look on nearby edges, localizing them accurately”. 
 
In this section we describe how to combine these tools with the 
aim to detect individual trees and reconstruct the outline of the 
crown. As mentioned above a Multi Scale Representation of the 
image in the Linear Scale Space is used as a basis for the 
approach. The main steps of the processing strategy are 
depicted in Figure 6: 
(1) Segmentation: Every scale level ( ),H x σ  of the surface 

model ( )H x  is subdivided in segments Bσ  using a Watershed 
transformation. The resulting segments are the Basins of the 
Watershed transformation, were σ  indicates the scale level. 
(2) Computation of membership values: Membership values 
were assigned to every segment Bσ , which are partly derived 
from the segments itself (size and circularity), or the area 

belonging to the appropriate scale level ( ),H x σ

(
 of the surface 

model (curvature), and the image ),I x σ  (⇔ vegetation 

index or texture). This results in hypothesis for trees ( )B aσ  
with a feature vector a  of four fuzzy membership values. 

)eσ
(e aσ )

(3) Selection of valid hypothesis: Every tree hypothesis 
( )B aσ  is first evaluated based on the feature vector. In some 

cases this is leading to valid hypothesis from different scale 
levels which are covering each other in the xy-plane. These 
covering segments have to be detected and the best one 
according its membership value, is selected as Tre (a . 

(4) The outline of the crown of every Tre  is measured 
using Active Contours.  
 
3.2.1 Segmentation of the Surface Model 
The segmentation of the surface model is that part of the 
approach which depends heavily on the scale. As mentioned 
above we perform a segmentation of the surface model in many 
scales. The segmentation procedure itself should be free of 
parameters and work only in the image space not in the feature 
space, because the feature space is independent from the scale 
level. The watershed transformation fulfils these requirements, 
and in addition it is well suited for the segmentation of height 
data. One reason is that the key idea of the watershed 
transformation is the segmentation by means of a flooding 
simulation (Soille 1999). Basins are the domains of the image 
which are filled up first if a water level increases from the 
lowest grey value in the image. Watersheds are embankments 
between the Basins. This segmentation technique is also used in 
(Schardt et al. 2002) and a quite similar technique in (Persson et 
al. 2002) with the aim of detecting individual trees. 
 
If the watershed procedure shall be applied to extract trees from 
height data the surface model has to be transformed in such a 
way that the trees itself are basins. The easiest way to do this is 
to invert the surface model, as proposed in (Schardt et al. 2002). 
In forest areas there are usually narrow valleys between the 
individual crowns. In other areas, if trees occur in small groups 
or in rows like in settlement areas, the situation changes. 
Because these valleys can be very wide, the outlines of the 
basins are usually quite poor approximations of the crowns. 
Then it leads to much better results to use the edges of the 
surface model as segmentation function. 
 
The watersheds of the inverted surface model are superimposed 
to the surface model in the left part of Figure 8, and the 
watersheds of the squared Laplacian of the surface model in the 
right part. Note, that the basins in the left Figure fit much better 
to the individual crowns than the basins in the right one. One 
can also see that if the trees stand close together – such as in 
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Figure 7: Processing Strategy for the extraction of trees 



 

forest areas- the watersheds are correct. One can follow that in 
general the edges should be used, because this works in both 
cases. 
 

  
Figure 8: A subset of the surface model showing three trees 

(left) with superimposed watersheds of the inverted 
DSM (middle), the right image shows the 
watersheds if the edges of the surface model are 
used as segmentation function. 

 
3.2.2 Computation of Membership Values 
In this section we explain the four membership functions, which 
are used to transform the values for circularity, convexity, size 
and vitality (ref. Section 3.1) into membership values. 
 
The following break points are used to define the membership 
function (Figure 9 left) for the size of a tree: The lower border 
is 20 m² according to a diameter of 2.5 m and the upper border 
is 700 m² ( 15 m). For larger values the membership value 
decreases, the largest possible diameter is assumed to be 35 m 
( 3850 m²). The values for diameters cover all tree species, 
they can be found in (Gong et al. 2002). In the mentioned 
investigation the typical diameters are given as well as the 
minimum und the maximum values, which are used to define 
the breakpoints of the size membership function. 

⇔

⇔

 

 
Figure 9: Size (left) and circularity (right) membership function 
 
The circularity of a segment is the second feature (Figure 9 
right). This feature is computed with the following formula: 

( ) max/circularity Area B rσ π=  (3)
A sensible lower border is close to the value of 0.7, the 
circularity value of a square. The upper border is equal 1 
according to the circularity of a circle. The other breakpoint 
was set empirically.  
 
The sign of the Laplacian of the surface model is used to 
discriminate between convex surfaces as trees and non-convex 
surfaces. For example the surfaces of building’s roofs and the 
most ground surfaces are plane, whereas the crown of a tree is a 
convex surface (refer to Section 3.1.1). Thus, a negative mean 
value of the Laplacian within the covered area of a segment 
leads to a membership value of 1, and in the case of a positive 
mean value the membership value is 0 (Figure 10 left). 
 

 
Figure 10: Convexity (left) and vitality (right) membership 

function 
 

The last feature vitality is derived from the optical image, it is 
used to discriminate between vegetation and non-vegetation 
areas (Section 0). In this example we use the NDVI value as 
indicator for the vitality (Figure 10 right). Normally trees have 
relatively high NDVI values. Therefore we use a membership 
function with increasing membership value for positive NDVI 
values with a break point at (0.5, 0.8). The reason for this 
breakpoint ist that trees compared to lawn have usually a 
relative high NDVI value. A NDVI value of above 0.5 is a good 
hint for a tree. 
 
3.2.3 Selection of Valid Hypothesis 
The classification of the segments is subdivided into two steps. 
First, valid segments are selected according to their membership 
values. A tree is an object with a defined size, circularity, 
convexity and vitality. Consequently the minimum value of the 
feature vector is the value which defines if a hypothesis ( )B aσ  

is a ( )Tree aσ  or not. In some cases the valid hypothesis from 
different scale levels can occur at a more or less identical 
position in the scene: Refer to Figure 11, the left image shows 
the valid hypothesis for trees at a scale level of σ=1.9 m and the 
right one at σ=3.7 m. One can see that many valid hypotheses 
occur in more than one scale. In some cases the segments are 
quite similar in both depicted scale levels, but in some other 
cases the segments are subdivided in the finer scale level. The 
trivial case – a segment in just one scale – is more an exception. 
 

  
Figure 11: Valid tree segments in two different scale levels. 

Left: σ=1.9 m. Right: σ=3.7 m. 
 
In the second step these different situations for every segment 
are analysed. Hence, the topological relation between the 
segments over different scale levels has to be classified. If the 
type of the topological relation is known, the best hypothesis 
for a tree can be selected at one and the same spatial position.  
 
The classification of the topological relations between the valid 
segments is performed as proposed in (Winter 2000). In 
general, eight different topological relations exist in 2D space: 
disjoint, touch, overlap, covers, contains, contained by, covers, 
and covered by (Egenhofer & Herring 1991). These topological 
relations can be subdivided into two clusters C1 and C2, where 
the C1 cluster includes the relations disjoint, touch and C2 the 
other ones. The overlap relation is between these two clusters, it 
can be divided into weak-overlap (C1) and strong-overlap (C2) 
(Winter 2000). The motive behind this partitioning is that the 
relations in C1 are similar to disjoint, and in C2 to equal.  
 
Here we postulate that all the segments  which have a 

topological relation from C2 to another segment 

( )AB a
( )BB a , 

A B≠  from another scale level are potential hypothesis for the 
same tree in the real world. The best hypothesis - the one with 
the highest membership value - is selected as Tre ( )e aσ  
instance. Accordingly, both investigated hypothesis are 



 

assumed as valid if the relation between the two segments is 
from C1. 
 

 
Figure 12: Selected segments superimposed to the surface 

model, the white lines depict the best segments over 
all investigated scales.  

 
The selected hypotheses are depicted in Figure 12. The white 
lines correspond to the outlines of the segments, which are 
selected as valid trees (compare Figure 11). Most of the trees in 
the scene were detected correctly, but many of the boundaries 
are not really good approximations for the outline of the 
individual crowns. The reason for the worse approximation of 
the outline is that the feature circularity is relatively weak for 
small segments on the one hand, and on the other hand it is the 
main decision instance between segments at the same location, 
if the size, the vitality, and the convexity criterion have similar 
or equal membership values. This occurs often, if the crown 
consists of more than one sub-crown. This leads over to the last 
processing step: The outlines of the crowns will be refined with 
Active Contours. 
 
3.2.4 Measurement of the Outline 
The outlines of the segments were extracted in different scale 
levels. But the outline of the crown is an object without a 
changing scale, as distinct from the crown itself. In order to 
take this into account, the outline of the crown is measured in 
the fine scale with the help of an Active Contour Model, 
respectively a Snake. A Snake is a deformable geometric model 
with physical properties like elasticity. It is a kind of a virtual 
rubber cord which can be used to detect valleys in a hilly 
landscape with the help of gravity. If the Snake is initialised 
close to the valleys of the landscape, the gravity causes a 
movement to the valleys. The “landscape” may be a surface 
model, an image, or the edges of an image. The movement 
originates in a field of gradients, which can be computed on the 
base of an edge detectors result. Compare Figure 13: In the 
background one can see the edges of a circular object, the 
enlargement in the foreground shows the field of gradient 
vectors. The source of the gradient field is usually assigned as 
external force or external energy.  
 

 
 

Figure 13: Left: External force for a Snake (background) and 
the resulting field of gradients which controls the 
movement of a Snake (foreground).  
Right: Example for the measurement of the outline 
with a Snake. Five different optimisation steps are 
depicted. 

 
Snakes were originally introduced by (Kass et al. 1988) as mid-
level algorithm which combines geometric and/or topologic 
constraints with the extraction of low-level features from 
images. The principal idea is to define a contour with the help 
of mechanic properties like elasticity and rigidity, to initialise 
this contour close to the boundary of the object one is looking 
for, and then let the contour move into the direction of the 
boundary of the objects. The original energy based approach for 
the contour can be reformulated to a pure geometry based 
approach, called Geodesic Active Contours (Caselles et al. 
1997). Recent developments combine Geodesic Active 
Contours with level set methods (Paragios & Deriche 2002), 
then the topology of the Active Contour can change during the 
optimisation.  
 
In general, there are two main drawbacks for the application of 
Snakes as measurement tool. The first one is that the Snake has 
to be initialised very close to the features one is looking for. 
Otherwise the behaviour of the Snake is nearly impossible to 
predict. The second one is the tuning of the parameters, 
primarily the weighting between internal and external forces 
and the selection of the external force field itself.  
 
In our approach the Snake is used only for the fine 
measurement in the last stage, the coarse shape of the crown is 
more or less known. Furthermore we know that the 
approximation is often too small. Based on these constraints we 
could build a Snake which is quite stable under this special 
conditions: The geometry of the Snake is initialised for every 

( )Tree aσ  as circular shaped closed polygon at the gravity 

centre of the appropriate Basin Bσ . This initialisation stage is 
depicted in Figure 12 as grey (blue) circle in the left image. The 
parameters for the internal energies were tuned such that the 
length of the contour is low, and the curvature a high weighted. 
Without external forces, a Snake which is tuned in such a way 
converges to a circle with a trend to decrease its length2. As the 
approximation is often to small (see last section) an additional 
force is added, which makes the Snake behave like a balloon 
(Cohen 1991). With this additional force the contour moves 
towards the outline of the crown even if no external forces 
influence the movement. As external force the we use the 
absolute value of the gradients ( ),H x σ∇ . In order to enhance 
the capture range of the gradients in the fine scale (refer to 
Figure 14 left) we use the sum of the gradients absolute values 
over all scale levels. The fine scale edges are preserved and the 
capture range is enhanced, compared to the fine scale edges 
alone (refer to Figure 14 right). 
 
At least, the membership values of every  has to be 
computed again because its outlines have changed. Even the 
topological relations between the tree hypotheses are no longer 
valid and have to be computed again. Furthermore, a changing 

( )Tree aσ

                                                                 
2 The weighting parameter alpha for the first order term of the 

internal energy is set to low values close to zero, the 
parameter beta for the second order term has a high weight. 
According to the classical notion of (Kass et al. 1988). 



 

of the topology occurs if the segments  correspond to 
two or more parts of the same crown in the real world. 

( )B aσ

(
σ

∇∑

 

 
( ), 0.4H x m∇  

 
),H x σ  

Figure 14: Examples for different external forces fields.  
 
In these cases, the Snake converges usually to an identical 
solution for every of these parts. And this again leads to the 
change of the topological relation from the C1 cluster (similar 
to disjoint) to the C2 cluster (similar to equal). The updated 
membership values are quite independent from the pre-
processing in the different scale levels. Therefore these values 
are well suited as internal evaluation of the tree hypotheses. 
 

4. RESULTS 

The results of the whole approach are depicted in Figure 14, 
every  as one circle. The position of the Tre( )Tree aσ ( )e aσ  
is the centre of gravity of its outline, and the radius is computed 
based on the outline’s length. The valid instances are plotted in 
black, the white circles are the hypothesis which are looked 
upon as not valid. The instances, which are marked with an “A” 
in Figure 15, are examples for the situation as mentioned above: 
A crown which was split into two or more segments was 
correctly delineated by the Snake, and as a result the redundant 
instances were removed. In the “B”-marked situation a true 
positive was removed, because it was strong overlapped by 
another instance. The “C”-marked instances are evaluated as 
not valid because the membership value after the re-
computation is too low. 
 

 
Figure 15: Final results of the approach. Valid hypothesis for 

trees are depicted as black circles, non-valid 
hypothesis as white circles. 

 
The results as depicted in Figure 15 are typical for the approach 
if the membership functions were not tuned for a special scene. 
The values for the size stem from an independent investigation 

(Gong et al. 2002), and the convexity is always positive. Only 
the breakpoints in the circularity membership function are more 
or less heuristic values. The breakpoint for the vitality has to be 
selected manually. Under this pre-conditions the results are 
convincing. 
 

5. SUMMARY AND OUTLOOK 

An approach for the automatic extraction of trees from a true 
orthoimage and a digital surface model was presented in this 
paper. The approach is free of a’priori assumptions about the 
scale level in which the trees are represented ideally. The 
relevance of the scale level has been worked out in the paper. 
The segmentation is performed in a wide range of scale levels, 
and the evaluation of the segments is independent from the 
scale. The approach is free of assumptions about the terrain, 
because the height of the trees is not used for the detection. This 
is important to note, as it is a difficult task to extract the ground 
surface in forest areas automatically. And finally the 
classification of the hypothesis is based on not more than four 
parameters: size, circularity, convexity, and vitality. From these 
four parameters only one depends of the used image material, 
the other ones are object properties. The measurement of the 
crown’s outline is performed with a Snake. The tuning of the 
parameters for the Snake algorithm is a difficult task, but once 
adjusted it works stable as measurement tool without changing 
these settings if the input data and/or the context changes. The 
approach was tested on different larger data sets, which can be 
found in (Straub 2003a) (Straub 2003b). 
 
Further developments should focus on the evaluation of the tree 
hypothesis. The highest potential is expected by a refinement of 
the membership functions with the help of statistical 
investigations on large data sets. The detection of the individual 
trees and the measurement of the outline can be looked upon as 
a bottleneck for the further classification of trees. Based on 
these, further information about the 3D shape of the crown or 
the fine structure characteristics of the individual tree can be 
extracted in the future. 
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