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ABSTRACT: 
 
An approach for the automatic extraction of trees is presented. It is based on a multi-scale representation of a surface model in 
Linear Scale Space. The segmentation of the surface model is performed using a watershed transformation in multiple scale levels in 
order to detect trees of different size classes. The detection of the trees in the investigated scene is based on four parameters; three of 
them can be looked upon as object specific. Only one parameter depends on the raster data. The approach was applied to different 
data sets, surface models from laser scanner and from image matching, also. Urban and forest scenes were investigated. 
 
 

1. INTRODUCTION 

In this paper we present an approach for the automatic 
extraction of individual trees. A digital surface model is used as 
main source of information for the extraction of individual 
trees. Colour information from optical images is used, in order 
to differentiate between vegetation and other objects in the 
investigated scene. 
 
The approach can be looked upon as a top-down low-level 
operator: Individual trees are extracted without a high level 
steering component, the number of steering parameters is 
comparatively small, and no assumptions regarding the context 
are made. Of course, this statement is only true in the 
application domain of the extraction of topographic objects 
from aerial/satellite images and surface models, not for 
terrestrial recordings. The trees must be visible from above in 
the image and 2.5D height data. Originally, the method was 
developed for the automatic extraction of trees in settlement 
areas from very high-resolution data: a surface model with a 
ground sampling distance (GSD) of 0.2 m and true orthoimages 
with 0.1 m GSD. An example of such a data set is depicted in 
Figure 1, it was acquired over Grangemouth, Scotland in 
summer 2000, refer (Straub & Heipke 2001) for details about 
the data set. 
 
In order to investigate the potential of the approach, we applied 
it on three other data sets. The first one is called the 
Hohentauern data set, a test site in a forest in the Austrian Alps. 
The main species in this test site is spruce (94%). The laser 
scanner flight with a TopoSys I Scanner was carried out in 
August 1999 in Austria, close to Hohentauern. The flying 
altitude was approximately 800 m above ground, leading to 4-5 
points per m². The Joanneum Research in Graz, Austria 
provided the data for this investigation. The second data set was 
captured in the April of 2001 with the TopoSys II sensor from 
about 830 m above ground in the south of Germany close to the 
city Ravensburg. This Ravensburg data set consists of a surface 
model with 1 m resolution and optical data with 0.5 m 
resolution. The TopoSys GmbH, Germany, made the 

Ravensburg data set available1. The third data set was acquired 
with the HRSC acquisition system by ISTAR in summer 1999 
over Paris. The GSD of the three-line scanner was 0.5 m and 
the computed surface model has a GSD of 1 m. The data set 
was provided by ISTAR, France. 
 
The paper is structured as follows: After a short overview on 
related work in the next section, a brief description of the 
approach is given. The next section is about the performance 
evaluation, including visual examples of two data sets. The 
paper closes with a short summary and an outlook on future 
work. 
 

2. RELATED WORK 

Trees are important topographic objects in different fields of 
applications. Not only ecological aspects constitute the interest 
in trees but also different economic factors. Obviously, data 
about trees are important in forest inventories and forestry GIS 
applications. In forest inventories trees are counted and 
parameters like height and stem diameter are measured. Recent 
work in the field was published in (Pollock 1996), (Brandtberg 
& Walter 1998), (Larsen 1999), (Andersen et al. 2002), 
(Persson et al. 2002), and (Schardt et al. 2002). An excellent 
state-of-the-art overview is gives (Hill & Leckie 1999). 
 
A common element of many approaches is the geometric model 
of a tree proposed by Pollock in (Pollock 1994). In the 
following, this surface description is assigned as Pollock-
Model. Two different surfaces, which can be described with the 
Pollock-Model, are depicted in Figure 1: The left one is an 
example for a deciduous tree, and the right one for a coniferous. 
 

                                                                 
1 An overview about companies and sensors dealing with laser 

scanning gives (Baltsavias 1999). 



 

 
Figure 1: 3D visualisation of the Pollock-Model.  

Left: Surface model of a typical deciduous tree: 
a=7, b=3.5, n=1.2. Right: Coniferous tree: a=20.0; 
b=5.0; n=1.2. 

 
In the real world, the surface of a tree is of course very noisy in 
comparison to the Pollock-Model. This noise is not caused by 
the measurement of the surface. It is simply a consequence of 
using such a model for a complex shape like the real crown of a 
tree. But the main shape of the crown is well modelled with this 
surface description. 
 
Another common element in the most approaches is the 
application of the Linear Scale-Space in the early processing 
stages of the image analysis, for example (Dralle & Rudemo 
1996), (Brandtberg & Walter 1998), (Schardt et al. 2002), and 
(Persson et al. 2002). In (Andersen et al. 2001) a morphological 
Scale-Space is used for the extraction of tree positions. 
 
A basic idea of a Scale-Space in image analysis is to construct a 
multi-scale representation of an image, which only depends on 
one parameter and has the property of causality: That means it 
has to be insured, that features in coarse scale have always a 
reason in fine scale (Koenderink 1984). One can show, that a 
multi-scale representation based on a Gaussian function as low 
pass filter fulfils this requirement (Lindeberg 1994). In practice, 
the original signal ( )xf  is convolved with a Gaussian kernel 
with an increasing scale parameter σ, the result of the 
convolution operation is assigned as ( ),xf σ . Small values of 
σ correspond to a fine scale level, large values to a coarse scale. 
An extensive investigation and mathematical reasoning 
including technical instructions can be found in (Lindeberg 
1994). 
 
One of the crucial problems from the position of object 
extraction is the estimation of the scale parameter σ, i.e. the 
selection of the scale level for the extraction of the low-level 
features. In (Schardt et al. 2002) it was proposed to use a scale 
selection mechanism, based on the maximum response after 
Scale-Space transformation; refer (Lindeberg 1998) for details. 
In our approach the scale selection is applied on a higher level, 
i.e. after the segmentation of the image, and not before, as it 
was proposed in (Schardt et al. 2002). This allows an internal 
evaluation of the segments on a semantic level, which is 
important if it is necessary to distinguish between trees and 
other objects. 
 

3. DESCRIPTION OF THE APPROACH 

The idea of the approach is to create a multi-scale 
representation of the surface model similar to (Persson et al. 
2002). Here, the selection of the scale level is of crucial 
importance for the extraction of trees. On the one hand the 
correct scale level depends partly on the size of the objects one 
is looking for. But in the case of trees this size is neither known 

a priori nor it is constant for all trees in one scene. On the other 
hand the correct scale is of crucial importance for the 
segmentation. In order to overcome this chicken-and-egg 
problem, the segmentation is performed in a wide range of 
scales, just bounded by reasonable values for the minimum and 
maximum diameter of a tree’s crown. 
 
The basis techniques of the approach are: the Linear Scale-
Space Theory; the watershed transformation is used as 
segmentation technique, and Fuzzy Sets for the evaluation of 
the segments. The basic ideas of the Linear Scale-Space Theory 
were originally proposed in (Koenderink 1984), and were 
worked out in (Lindeberg 1994). Details about the watershed 
transformation can be found in (Soille 1999). Fuzzy Sets 
(Zadeh 1965) are used, because they are a “very natural and 
intuitively plausible way to formulate and solve various 
problems in pattern recognition.” (Bezdek 1992). 
 
The necessity of a multi-scale approach for the extraction of 
trees from a surface model in Scale-Space ( ),H x σ  can be 
shown with the help of the magnitude of the surface model’s 
gradient ( ),H x σ∇  and its Laplacian ( ),H x σ∆ . The surface 

model ( ), 0H x∆  of a group of three trees is depicted in the left 
part of Figure 2 together with a height profile (dark grey line), 
the magnitude of the gradient (black line), and the Laplacian 
(light grey line) in the right part of the figure. The height profile 
and the corresponding derivatives were measured along the 
dotted line in the surface model. The same situation is depicted 
in Figure 3, but based on a slightly filtered surface model 

( ), 3 mH x∆ . 
 

 
Figure 2: The surface model of three trees is depicted in the left 

part; in the right part the height profile along the 
dotted line, the magnitude of the gradient, and the 
Laplacian are depicted. 

 
In the case of an analytical function like the geometrical part of 
the Pollock-Model the Laplacian is negative if the surface is 
konvex. In the case of the real surface of the trees the height 
profile of ( ), 0H x∆  is a little bit noisy, and as a result of this 
noise the Laplacian is oscillating close to zero, see Figure 2. In 
the “correct” scale level for this small group of trees the 
assumptions regarding the Laplacian are fulfilled quite well: 
The Laplacian is negative for trees (convex surface) and 
positive for the valleys between them (Figure 3). Additionally, 
the coarse structure of the crown is enhanced. As a result of the 
transformation in Scale Space the properties of the Pollock-
Model are valid for the real trees in this correct scale level. 
 
 



 

 
Figure 3: The surface model in the left part shows three trees 

filtered with a Gaussian (see Figure 2). 
 
The correct scale level depends on the actual situation in the 
scene under investigation and cannot be predicted without 
detailed pre-knowledge about the scene. Therefore the 
segmentation is perfromed in a series of different scale levels, 

, whereas  is usually 
smaller than 5. Theoretically the upper bound does not 
influence the result, but only the computation time of the 
approach. The reason is that the size of the segments, which is 
influenced by the size of σ, is upper-bounded by the possible 
size of trees. And in turn the size is evaluated together with 
three other features in order to differentiate between trees and 
other objects in the investigated scene. 

max2 , 0, 0.5,1.5, ....n nσ = = n maxn

 
The strategy for the extraction of trees can be subdivided in two 
main phases, as depicted in Figure 4. First in the segmentation 
phase, a watershed transformation is performed in different 
scale levels of the surface model ( ),H x σ . In a second step the 

resulting segments  were evaluated with the aim to classify 

them, i.e. to select those segments, which are s. The 

image 

,aSσ

aTree
( ),I x σ  enables the use of additional optical 

information in order to differentiate between trees and other 
high objects (buildings) in the scene. 
 

Tree(am)Watershed-
transformation

Segment
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Image
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Surface Model
H(x,sigma)

 
Figure 4: Strategy 

 
The segmentation of the surface model is that part of the 
approach which depends heavy on the scale. As a consequence 
the segmentation procedure itself should be (1) free of 
parameters and (2) operate only in the image space and not in a 
feature space. The reason is, that a feature space has to be 
independent from the scale level for a low level operator. The 
watershed transformation fulfils these requirements. Additional, 
it is well suited for the segmentation of height data, because the 
key idea of the watershed transformation is a segmentation of 
an image by means of a flooding simulation (Soille 1999). 
Basins are the domains of the image, which are filled up first if 
a water level increases from the lowest grey value in the image; 
Watersheds are embankments between the Basins. This 
segmentation technique is also used in (Schardt et al. 2002) and 
a quite similar technique in (Persson et al. 2002) with the aim of 
detecting individual trees. 
 

In the phase of segmentation every scale level ( ),H x σ  of the 

surface model ( )H x  is subdivided into segments ,aSσ . These 
segments are the Basins of the watershed transformation. If the 
watershed procedure is applied to extract trees, the surface 
model has to be transformed in such a way, that the trees itself 
are local minima. The easiest way to do this is to invert the 
surface model, as proposed in (Schardt et al. 2002). This works 
in forest areas, because there are usually narrow valleys 
between the individual crowns. In other areas like in settlement 
the situation may change, for example if trees occur in small 
groups; or if a way or a road occurs in forest areas. If these 
valleys are wide, the outlines of the basins are quite poor 
approximations of the crowns. Then it leads to better results to 
use the edges of the surface model as segmentation function. 
Good experiences have been made with the squared Laplacian 

( )( 2
,H x σ∆ )  as segmentation function in our experiments. 

Refer Figure 5 for an exemplary segmentation in three different 
scale levels. 
 

 
Figure 5: Basins of the watershed transform on three different 

scale levels 
 
Finally, membership values were assigned to every segment 

,aSσ , which are partly derived from the segments itself (size 
and circularity), or the area belonging to the appropriate scale 
level ( ),H x σ  of the surface model (curvature), and the image 

( ),I x σ  (⇔ vegetation index or texture). This results in a 
feature vector a  consisting of four fuzzy membership values, 
which is assigned to every segment . Four membership 
functions are used to transform the values of circularity, 
convexity, size and vitality into the corresponding membership 
values. 

,aSσ

 
The membership function for the circularity 

( ) max/Area B rσ π  of a segment is depicted in Figure 6 (upper 
left). A sensible lower border is close to the value of 0.7 
(circularity of square) and the upper border is 1 (circularity of a 
circle). The sign of the Laplacian of the surface model is used 
to discriminate between convex surfaces as trees and non-
convex surfaces. For example, the surfaces of buildings and the 
most ground surfaces are plane, whereas the crown of a tree is a 
convex surface. Thus, a negative mean value of the Laplacian 
within the covered area of a segment leads to a membership 
value of 1, and in the case of a positive mean value the 
membership value is 0 (Figure 6, lower right). 
 



 

 
Figure 6: Membership functions 

 
The following break points are used to define the membership 
function (Figure 6, upper right) for the size of a tree: The lower 
border is 20 m² according to a diameter of 2.5 m and the upper 
border is 700 m² (⇔ 15 m). For larger values the membership 
value decreases, the largest possible diameter is assumed to be 
35 m ( 3850 m²). These typical values for diameters cover 
all tree species, they can be found in (Gong et al. 2002). The 
feature vitality can be derived from an optional optical image 

⇔

( ),I x σ , see Figure 4. It is used to discriminate between 
vegetation and non-vegetation areas. In the examples (see 
section 4 of this paper) the Normalized Difference Vegetation 
Index (NDVI) was used. High positive values are indicators for 
trees, negative values for buildings or roads – in any case not 
for vital vegetation. A membership function with an increasing 
membership values (Figure 6, lower left) for positive NDVI 
values is used with a break point at (0.5, 0.8). 
 
It should be noted, that – except for the NDVI value, which 
depends in principle of the used sensor – all these parameters 
are object specific parameters, independent from the data. 
 
The evaluation of the segments (refer Figure 4) consists of two 
steps. The first step is the evaluation of every segment ,aSσ  
based on its feature vector (refer Figure 7). This leads in some 
cases to valid hypothesis in different scale levels. These 
segments are covering each other in the image-plane. They are 
detected in the second step and the best one - according to its 
membership value - is selected as Tr . A Tr  is an object 
with a defined size, circularity, convexity AND vitality. 
Following the rules of the Fuzzy-Theorie, the minimum value 
of the feature vector is that value, which defines if a segment 

 is classified as Tr  or not.  

aee aee

,aSσ aee
 

 
Figure 7: Valid hypotheses for trees in three different scales. 

The best hypotheses in scale space are marked with 
a white circle. 

 
In some cases a valid hypothesis can occur at a more or less 
identical spatial position in the scene, but at different scale 
levels. In some cases these segments are quite similar in both 
depicted scale levels, and in some other cases the segments are 
subdivided in the finer scale level. The trivial case – a segment 
in just one scale – is rather an exception. These different 
situations of every segment have to be analysed. Hence, the 
type of the topological relation between the segments of 

different scale levels has to be classified. If the topological 
relation is known, the best hypothesis for a tree can be selected 
at one and the same spatial position. 
 
The classification of the topological relations between the valid 
segments is performed as proposed in (Winter 2000). In 
general, eight different topological relations exist in 2D space: 
disjoint, touch, overlap, covers, contains, contained by, covers, 
and covered by (Egenhofer & Herring 1991). These topological 
relations can be subdivided into two clusters C1 and C2, 
whereas the C1 cluster includes the relations disjoint, touch and 
C2 the other ones. The overlap relation is between these two 
clusters; it can be divided into weak-overlap (C1) and strong-
overlap (C2) (Winter 2000). The motive behind this partitioning 
is that the relations in C1 are similar to disjoint, and in C2 to 
equal. We postulate that all the segments , which have a 

C2 topological relation to another segment 

( )AS a

BS ( )a  A B≠ , 
from another scale level, are potential hypothesis of the same 
tree in the real world. The best hypothesis - the one with the 
highest membership value - is selected as ( )aTreeσ  instance. 
These best hypotheses in scale space are marked with a white 
circle in Figure 7.  
 
Finally, the gravity centre of a  is used as position 
for the stem and the radius is computed based on the covered 
area of the selected segment. 

( )Tree aσ

 
4. PERFORMANCE EVALUATION 

Recently, the approach was applied on those four different data 
sets, which were briefly described in the introduction of this 
paper. In this section we present first results of a performance 
evaluation of the approach. The test was carried out with one 
and the same set of membership functions for the features 
circularity, convexity, and size for all data sets. Only the 
vitality membership function was adapted to the different 
sensor data, the Hohentauern data set was processed without 
additional optical information. 
 
In the last part of the previous section the procedure was 
described, which is used to detect a C2 relation between two 
objects on different scale levels. For the performance evaluation 
the same procedure is used to detect a 1:1 relation between a 
manually captured tree, assigned as REFTree

( )e aσ

 in the following, 

and an automatically extracted Tre . The acquisition of 
the reference data was performed on the basis of the same 
image data, which were used for the automatic procedure. It 
should be noted, that these reference data are a kind of an 
optimal result of what the approach should deliver from the 
developers point of view. The relationship between the 
manually captured reference and the trees in the real world is 
not discussed here. An investigation referring to this can be 
found in (Pollock 1996). 
 
An extracted tree Tre ( )e aσ  is assigned as True Positive (TP), 
if it has a topological relation from the C2 cluster with a tree 
from the manually captured reference, if not it is assigned as 
False Positive (FP). Those trees in the reference with a C1 
relation to an extracted tree are assigned as False Negatives 
(FN). Based on these numbers, the Completeness  and the 

Correctness  of the extraction result can be computed: 
omC

orrC
 



 

om orr
TP TPC CTP FN TP FP= =+ +

 (1)
 
In order to characterize the accuracy of the correct extracted 
trees, the arithmetic mean value and its standard deviation were 
computed for the distance between the centres of gravity and 
the radii between the REFeeTr , and the corresponding 

.  ( )Tree aσ

 
The results for the four data sets are given in Table 1. The best 
results for the completeness were achieved for the 
Grangemouth and the Paris data set. 
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Grangemouth 96 81 1.1 0.8 -0.1 0.8 
Hohentauern 70 86 1.1 0.8 -0.8 0.8 

Paris 90 70 1.9 1.7 2.0 1.4 
Ravensburg 50 59 1.4 1.0 -0.1 1.0 

Table 1: Quality and accuracy 
 
In the case of the Paris data set the accuracy of about 2 m for 
the position and the radius is quite poor, also the correctness of 
the extraction result is not really good. For a visual inspection 
of the results for the Paris data set refer Figure 8, examples of 
the Grangemouth data set are published in (Straub 2003a). A 
more detailed description of the results of the Hohentauern data 
set is given in (Straub 2003b). The values for the completeness 
of 70% and the correctness of 86% are inferior to the other 
examples, but it is in the same order of magnitude as it was 
reported for other approaches. For example in (Persson et al. 
2002) the Completeness of 71% ( =100%) and in (Pollock 

1996) 61% ( =85%) were achieved. Better results are 

reported in (Brandtberg & Walter 1998) ( C =85%, 

=100%) and in (Andersen et al. 2001) namely C =83%, 

and =89%.  

orrC

orrC

om

omorrC

orrC
 

 
Figure 8: Subset of the Paris data set. Extracted trees are 

superimposed as white circles. 
 
One reason for the poor results in the case of the Ravensburg 
data set is that it was acquired in April. Many trees were not 

detected, due to the fact that the assumption of a high NDVI 
value is was not fulfilled in this case. The correctness is bad, 
too. The poor performance of the approach in this case deserves 
closer attention; a corresponding investigation will be done in 
the near future. 
 

 
Figure 9: Subset of the Ravensburg data set. Extracted trees are 

superimposed as white circles. 
 

5. SUMMARY AND OUTLOOK 

In this paper an approach for the automatic extraction of trees is 
presented. The processing strategy is illustrated in detail. The 
approach is free of assumptions about the scale level, because 
the segmentation is performed in a wide range of different scale 
levels. The classification of the hypothesis is based on not more 
than four parameters: size, circularity, convexity, and vitality. 
From these four parameters only the vitality is depending on the 
used image material, the others are object properties. It should 
be noted, that the values for the size of the crowns stems from 
an independent investigation (Gong et al. 2002), and the 
convexity is always positive. Only the breakpoints in the 
circularity membership function are empirical values. 
 
The approach was applied on four different data sets with the 
same set of parameters (except vitality) in order to demonstrate 
its general portability. The results are promising, even if there 
are problems in one of the data sets. This problem will be 
investigated in the near future. 
 
Further developments should focus on the evaluation of the tree 
hypothesis. The highest potential is expected by a refinement of 
the membership functions with the help of statistical 
investigations on large data sets. The detection of the individual 
trees and the measurement of the outline can be looked upon as 
a bottleneck for the further classification of trees. Based on 
these, further information about the 3D shape of the crown or 
the fine structure characteristics of the individual tree can be 
extracted in the future. 
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