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In this paper we describe a method, which allows to model the positional and 
abstraction uncertainty of object’s borders stochastically and leads to a probability-
based decision of topological relations between area objects. The method was 
applied to evaluate the results of automatic extracted objects. By means of examples 
we demonstrate that the method is useful for update and quality description of 
geodata.  

1 Introduction 
The integration of automatic object extraction from imagery and Geo-Informationsystems for 
the update of geodata is an important task in the domain of photogrammetry. The most 
obvious reasons for this are (1) in many countries large geodata bases were built up in the last 
decade which have to be kept up to date and (2) the progress in automatic object extraction 
will lead to practical application. 

The update of geodata requires the comparison of objects in order to be able to detect 
significant changes between an up-to-date and a stored data set. In the case of a manual 
update of the data, the operator decides if stored object has changed. The automation of the 
update process requires a method which is able to make a similar decision, which means that 
the extracted objects have to be compared with the stored objects. The method should be able 
to take into account, that the objects in the GIS database are influenced by the uncertainty of 
the measurement process and by the abstraction process. One can say, that the objects have 
some kind of a typical precision of their geometric representation. For example, the 
borderline definition of a forest is relatively weak, and therefore it is not reasonable to define 
a forest border with sub-centimetre accuracy in a GIS database. An accuracy of the forest 
borderline of a few decimetres seems to be more realistic. But, the accuracy of the same 
object border in another data set can have a few meter accuracy, for example a classification 
result from a Thematic Mapper image with 30 m ground sampling distance [GSD]. And even 
if both objects are correct and valid descriptions of the real world, it is not clear how to 
compare them. 

The knowledge of topological relation is a basis for comparing two datasets. But, if the 
geometric representation of objects is uncertain, the topological relation between these 
objects are uncertain, too. Under some pre-conditions, WINTER (1996) prooved, that it is 
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possible to differentiate topological relations based only on the extreme values of the distance 
function between two objects in question, even if their boundaries are uncertain. We propose 
to refine the computation of the distance function and their extreme values, in order to 
overcome some practical problems. 

In this paper we give a short description of the applied approach for the comparison between 
two objects. Afterwards we apply the approach for the comparison of forest and settlement 
areas. 

2 Method for the Comparison of two Objects 

2.1 Topological Relations Between Compact Regions 
In this section we shortly describe the method that we have applied to assess the topological 
relations between polygon objects in different data sets. The approach was developed at the 
University of Bonn. We give a short overview about the concept, proofs and a detailed 
description are given in (WINTER, 1996; WINTER, 2000). At first we introduce the possible 
topological relations between two objects, see Fig. 1, these relations are binary. The 
conceptual neighbourhood graph (CNG) (EGENHOFER & FRANZOSA, 1991), gives an 
overview about the neighboured relations, see Fig. 2. Concerning the edges of the CNG one 
can see that EQUAL can change to COVERS, but not to TOUCH without passing the 
OVERLAP relation. 

The relations WEAKOVERLAP and STRONGOVERLAP are equivalent from the 
topological point of view, but with the help of an overlap factor (OF) the conceptual 
neighbourhood graph can be subdivided into two relation clusters C1 and C2. The OF is 
defined as the ratio between the intersection area of the two objects and the area of the 
smaller one of the objects, OF is exactly 1 if A and B are EQUAL, and 0 if they are 
DISJOINT, values ≤ 0.5 lead to the cluster C1, values > 0.5 lead to C2 (WINTER, 1996). In the 
following we focus only on the relation cluster C2. Consider the possible relations in Fig. 1 
and Fig. 2, beginning from EQUAL we will observe the transitions of the topological 
relations. If the diameter of the object B becomes smaller, all possible distances di between 
the borders of A and B lie inside of A, which means that A contains B – denoted as 
CONTAINS(A, B) in the following. If one then moves B until the border of B touches the 
border of A exactly one distance becomes zero and the topological relation changes to 
COVERS(A, B). Finally, we move B a little bit more and obtain distances lying in A and in B 
respectively, i.e. the relation changes to STRONGOVERLAP. One can show that the 
decision between the relations can be made by means of the minimum and maximum 
distances between the areas A and B. The sign of the distances d is defined such, that d is 
negative if d A⊂ , and positive otherwise. 
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Fig. 1: Possible topological relations between areas 
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Fig. 2: Conceptual neighbourhood graph 

Until now, we are able to deduce from the minimum and maximum distances (dmin, dmax) the 
topological relation between A and B. But these distance values are uncertain, they are 
influenced by the abstraction during the object extraction process and the imprecision of the 
measurement. As described above we want to introduce these aspects, whereby the 
abstraction leads to fuzziness and the measurement to imprecision. At first one has to define a 
range which is interpretable as IS_ZERO. Winter motivates the IS_ZERO concept with an 
example from a cadastral application: “Consider, e.g. a cadastral dataset with two points 
nearer than, let us say, 5 cm. Then one has strong support that both entries refer to the same 
point in real world” (WINTER, 2000, p.14). An interval for IS_ZERO can be determined by 
asking experts. For our problem we are at this point able to introduce the a priori knowledge 
about the resolution of the objects’ borders. The imprecision of measurement can be 
estimated from experience to σ , see also section 3. With these parameters we define a 
distribution function 0D f ([b,c], )σ=  for IS_ZERO. This distribution function 0D , is given 
by a convolution of a constant distribution (equipartition) in the interval [b, c] with a 
Gaussian ( ,µ σ ) -the middle distribution in Fig. 3. For values outside of the IS_ZERO 
interval two other closed intervals have to be defined, which are enclosed by the largest 
possible values, keeping in mind that the objects are of a finite size. 

 

Fig. 3: Example for probability distributions for the possible classes of distances between two objects

 



D0 represents a class ω0 from 0: { , , }ω ω ω− +Ω = . In a similar way we develop the distributions 
D f ([a, b], )σ− = and D f ([c,d], )σ+ = , representing the probability distributions for the two 
other classes of distances, ω−  and ω+  (Fig. 3). 

We are interested in the topological relations between the objects A and B, which can be 
determined by the probabilities of dmin and dmax being members of one of the three classes 
from Ω . These probabilities P (d)ω  can be calculated with Bayes Theorem (Equ. 1) if dP ( )ω  
and P( )ω  are known. 
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In Equ. 1 dP ( )ω  is given through the distributions D-, D0, D+, and P( )ω  through the intervals 
of the equipartitions. With Equ. 1 the probabilities minP (d )ω  and maxP (d )ω  can be calculated 
for dmin and dmax. Under the assumption that dmin and dmax  are stochastically independent the 
searched probabilities for the topological relations can thus be computed. 

2.2 Distance Function 
The necessary input values, dmin and dmax, needed for the estimation of the topological 
relations, can be found in the distance function from two objects A and B, shown in Fig. 4. 
With the zones P=AC∩BC and Q=A∩B, where the superscript C describes the outer area of 
the object, we define an uncertain zone 2O \ P,Q= �  representing the area between the 
boundaries of A and B, see Fig. 5. The needed values dmin and dmax can be calculated with a 
morphological distance transformation of O, as done by WINTER (1996). The sign of the 
distances di is negative if O ⊂ A otherwise positive, see the distance function in Fig. 6.  
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Fig. 4: Objects A and B Fig. 5: Uncertain zone 

with skeleton S 

 
Fig. 6: Distance function along the 

skeleton S 

 

2.3 Discussion of the Distance Function 
In general one has to take into account that the distance function along the skeleton of the 
uncertain zone O doesn’t represent the distance between P and Q in every case. One reason is 
that irregularities in the borders lead to small branches in the skeleton. Another reason is that 
the shape of O may lead to wrong distances between P and Q. For example, take the situation 



in Fig. 7. The value ds along the skeleton S2 of O is not a correct estimation of the needed 
distance. Therefore we use the distance d’(q) along the border of the certain zone Q. This 
value represents the correct distance which is needed for the topological analysis, see Fig. 8. 
In general, one has to take into account, that the borders of O and Q are not parallel, an angle 
dependent correction for d’(q) has to calculated. A detailed description of the calculation of 
the distance function is given in (GERKE, 2000).  

 

Fig. 7: Skeleton in O Fig. 8: Distance along the border of Q 

 

In the distance function some irregularities appear as peaks, which can be seen as a kind of 
gross errors. In order to eliminate these peaks, the distance function is median filtered. 
Because every distance di is assigned to one pixel si one can analyse the borderlines of A and 
B, especially the irregularities. 

3 Example 
In this section a detailed example for a forest area is given, in order to explain the approach. 
Furthermore we show numerical results of the evaluation of settlement and forest areas, 
which were extracted automatically. A description of the used approach for the automatic 
object extraction is given in (STRAUB ET AL, 2000). The application of the approach related to 
buildings are given in (RAGIA & WINTER, 1998; RAGIA, 2000). 

Fig. 9: Borderline of object A (black line) 
overlayed to object B (grey area) 

Fig. 10: Detected gross errors along the 
borderline of object B 

 



The objects that we want to compare can be characterised as follows. Object A was captured 
manually from an image with a resolution of 1 m, we assume a standard deviation of 0.5 m 
for the object’s border line. The other object was extracted automatically, the used image had 
a resolution of 12 m, in this case we assume a standard deviation of 0.5 pix for the 
imprecision of measurement, which leads to a standard deviation of 6 m for the Gaussian 
distribution, see Fig. 9. 

Assuming, that the automatic image processing steps lead to an uncertainty of two pixels in 
the borderline of the extracted forest objects the IS_ZERO interval is set to [-12 m, +12 m], 
which corresponds to two pixels in the used image data. This can be interpreted as the 
fuzziness of abstraction, introduced in section 2.1. The minimum and maximum possible 
values for the distributions D-/+ are set to -/+150 m, greater than the largest value from the 
distance function. The distance function printed in Fig. 11 has peaks, which were interpreted 
as gross errors. The filtered distance function without gross errors is printed in Fig. 12. As the 
spatial relation between the peaks in the distance function and the position in the image is 
known, there a local analysis at these image positions should be performed. This analysis can 
be carried out by a human operator or by a further automatic processing step. In Fig. 10 the 
gross errors are visualized. The squares at the border of object B show the points which are 
not taken into account for the topological analysis. 

s and d(s) given in pixel, 1 pixel = 3 m 

Fig. 11: Distance function for the objects A and B 

s and d(s) given in pixel, 1 pixel = 3 m 

Fig. 12: Median filtered distance function 

 

Numerical results related with extracted forest and settlement areas are shown in Tab.  1, the 
forest area, which is printed in Fig. 9, has got the ID 01 in this table. The objects B in Tab.  1 
were extracted automatically, and compared with manual captured reference data (A). Both 
data sets were captured on the base of the same image, but the topological relation between 
the objects is not EQUAL, as expected. Therefore we have to refine the extraction process by 
means of an extended model. For example, we have to model the shadows of the trees along 
the borderline of the forest, which was not done until now. 

In the case of settlement areas the IS_ZERO interval is set to [-45 m, 45 m] caused by the 
weak definition of the borderline. We argue, that even for a human operator it is difficult to 
define the borderline of a settlement area in an image, the fuzziness begins with the backside 
of the last building at the border and ends, perhaps, with a fence. In fact, the borderline of a 
settlement area is not really visible in an image, it is more related to an administrative border. 
Under this pre-conditions some of the settlement objects fit to the reference, they are assigned 
as equal. 



 

 ID dmin [m] class Pdmin(ω) dmax [m] class Pdmax(ω) Topological Relation: Ptop Rel

Forest 00 -60.0 ω- 1.00 6.6 ω0 0.81 COVERS(A, B): 0.81 

 01 -120.0 ω- 1.00 25.1 ω+ 0.99 STR. OVERLAP(A, B): 0.99 

 02 -108.0 ω- 1.00 6.9 ω0 0.79 COVERS(A, B): 0.79 

 03 -22.2 ω- 0.95 25.8 ω+ 0.99 STR. OVERLAP(A, B): 0.94 

 04 -216.0 ω- 1.00 10.2 ω0 0.62 COVERS(A, B): 0.62 

 05 -15.9 ω- 0.74 14.1 ω+ 0.63 STR. OVERLAP(A, B): 0.74 

Settlement 00 -36.0 ω0 0.90 23.4 ω0 1.00 EQUAL(A, B): 0.90 

 01 -141.0 ω- 1.00 63.0 ω+ 1.00 STR. OVERLAP(A, B): 0.82 

 02 -36.0 ωo 0.85 84.0 ω+ 1.00 COVERED BY(A, B): 0.85 

 03 -135.9 ω- 1.00 150.0 ω+ 1.00 STR. OVERLAP(A, B): 1.00 

 04 -33.0 ω0 0.97 36.0 ω0 0.91 EQUAL(A, B): 0.89 

 05 -81.0 ω- 1.00 102.0 ω+ 1.00 STR. OVERLAP(A, B): 1.00 

Tab.  1: Evaluation results 

The topological relations together with the distance functions can be looked upon as some 
kind of object specific indicators pointing to problems in the extraction process on the one 
hand, and on the other hand they can be used to specify the quality of the object in question. 

4 Summary And Outlook 
A method for the classification of topological relations between two objects, proposed by 
WINTER (1996), was implemented and tested. In order to be able to detect local 
inconsistencies between the objects, we have modified the calculation of the distance 
function. This modification allows us to access local inconsistencies between the objects 
borders. Nevertheless the analysis of the distance function is a critical point in the automation 
of the evaluation.  

Summarising one can say, that the applied method seems to be suited to characterize the 
performance of a given approach for object extraction. The method can be seen as a step to a 
theoretical founded evaluation of extraction results, which was often demanded in the past 
(FÖRSTNER, 1996).  

Furthermore the applied method gives us the possibility to find problems in the extracted 
objects automatically even if they have different geometric accuracy. This should be seen as 
an important information for the design of further processing steps.  

In the future we plan to investigate the force of expression of this approach for a whole GIS 
data set. Together with quality measures like completeness and correctness (WIEDEMANN ET 
AL., 1998) we will try to get statements like “Object A and B together are covered by 
Object C”. 
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