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Abstract. In this paper, we propose a generic integration of context-
knowledge within the unary potentials of Conditional Random Fields
(CRF) for object segmentation and classification. Our aim is to learn
object-context from the background class of partially labeled images
which we call implicit scene context (ISC). A CRF is set up on image
super-pixels that are clustered into multiple classes. We then derive con-
text histograms capturing neighborhood relations and integrate them as
features into the CRF. Classification experiments with simulated data,
eTRIMS building facades, Graz-02 cars, and samples downloaded from
Google™ show significant performance improvements.

1 Introduction

Our aim is to segment and classify objects in images. We want to assign a label
to each pixel of an image. Context knowledge may add valuable information if
local object descriptors deliver ambiguous results in complex scenes. We learn
contextual relations between single objects of a scene and introduce them as a
prior. Local object descriptors and contextual knowledge are combined in a CRF
framework and each pixel is labeled with the most likely object class.

Much research has already focused on how to exploit contextual prior knowl-
edge for object classification in images. In [9] and further related publications
Kumar and Hebert extended Conditional Random Fields (CRF), originally pro-
posed in [11], to two-dimensional data and applied them to object detection in
images. They consider contextual knowledge through pair-wise potentials that
are weighted with features. CRF's provide a highly flexible framework for con-
textual classification approaches. Torralba et al. [18] use Boosting to learn the
graph structure within a CRF framework. Spatial arrangements of objects in an
image are learned with a weak classifier and object detection and image segmen-
tation are done in a combined way. Shotton et al. [17] propose an approach based
on features derived from texton maps they call " TextonBoost” to achieve joint
segmentation and object detection applying Boosting within a CRF framework.
Murphy et al. [12] use CRF's for joint object detection and scene classification
within a CRF. This classifier learns that particular object categories are more
likely to occur in certain scenes than in others. False alarms due to ambiguous
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local features may be reduced because, for example, polar bears are not likely to
appear in a jungle scene. However, this approach considers context on a global
scene level but does not model relations of single objects. He et al. [5] introduced
the use of a multi-scale CRF for scene segmentation and classification incorpo-
rating contextual features at regional and global scene level in addition to local
features at pixel-level. Rabinovich et al. [14] formulate a CRF based on image
regions that encodes co-occurrence preferences over pair-wise object categories.
This allows them to distinguish between object categories that often appear to-
gether in the same image and, more important, categories that do usually not
appear within the same scene. Calleguillos et al. [3] develop this method further
by introducing contextual interactions at pixel-level and at region-level in ad-
dition to semantic object interactions via object class co-occurrences. Gould et
al. [4] add a spatial component by modelling relative locations between object
classes and introducing them into a CRF as additional potential.

Kohli et al. [7] generalize the classical pair-wise Potts model to higher order
potentials that enforce label consistency inside image regions. They combine mul-
tiple segmentations generated with an unsupervised segmentation method within
a CRF for object segmentation and recognition. Related works of Ladicky et al.
[10] propose a hierarchical CRF that integrates features computed in different
spatial units as pixels, image segments, and groups of segments. They formulate
unary potentials over pixels and segments, pair-wise potentials between pixels,
and between super-pixels and also a connective potential between pixels and the
super-pixels they are contained in.

Heitz and Koller [6] exploit context contained in the background class through
what they call the ”thing and stuff” (TAS) approach. The main idea is to, first,
cluster image super-pixels based both on local features and their ability to serve
as context for objects of interest and, second, to integrate this context prior into
a rigorous probabilistic framework for object detection. They combine a window
detector for local object detection with context that adds predictive power for
that particular object category. Savarese et al. [15] compute histograms of so-
called correlatons capturing correlations between pairs of pixels based on visual
word indices as function of distance. They learn exemplar histograms for each
object class from training data and test images are then assigned to the nearest
histogram in feature space.

1.1 Contribution

The key idea of our approach is to capture context of the background class
of partially labeled images via histograms to support object segmentation and
classification. With partially labeled we mean that only a small portion of the
object categories existing in the data are semantically annotated in training data.
All categories not explicitly labeled are contained within a joint background
class. Inspired by the "thing and stuff” (TAS) concept of Heitz and Koller [6]
and the "shape context” histograms of Belongie et al. [1] we introduce implicit
scene context (ISC) to CRFs. We seek a more general formulation and capture
background context and its relation to object classes via histograms (similar
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to [15]) and integrate it as a potential into a CRF. This is done without major
changes to the general CRF framework in terms of training and inference. We do
neither add an additional potential nor introduce any complex graph structure
but exploit the flexibility provided by the definition of the association potential
which depends on all data globally [9].

— Characteristic patterns within the background class of partially labeled im-
ages and their relation to labeled object classes are learned.

— Contextual patterns are formulated in terms of histograms. We achieve ro-
tation invariance and the use of multiple context scales ensures good perfor-
mance for both small and big objects.

— Although we model it as a unary potential within a CRF framework it can
generally be utilized (with minor changes) with any kind of non-contextual
classifier like Support Vector Machines, too.

This novel approach is generally applicable to any kind of image scene, for
example, aerial images, terrestrial images, and medical images.

2 CRPF classification framework

In the following, we denote scalars in normal face type and vectors in bold face
type. CRFs are discriminative models and thus directly model the posterior dis-
tribution P (y|x) of the labels y given data x. The label of the node ¢ of interest
is y; and y; the label of node j it is compared to. We have to formulate a cost
function which is usually written as an energy term F (x,y) that encapsulates
unary potentials and pair-wise potentials. In order to gain a posterior distribu-
tion P (y|x) we need to turn the energies into probabilities by normalizing them
through the partition function Z (x). Making use of sufficient statistics of the
exponential family we may then write the posterior distribution P (y|x) as:

P(ylx) = exp (£ (x,y)) (1)

1
Z (x)
Following the notations of Kumar and Hebert [9] we can express the en-
ergy term F (x,y) as the sum of association potentials A; (x,y;) and interaction
potentials I;; (x,v:,y;):

E(x,y)= ZAi (x,yi) + Z Z Lij (%, 9, y5) (2)

= i€S jEN;

The association potential A; (x,y;) measures how likely a label site i is la-
beled with y; given the data x. It contains all unary potentials defined over
cliques of size one and this is where our implicit context will be incorporated.
The interaction potential L;; (x, y;,y;) models the pair-wise potentials that are
defined over cliques of size two. It describes how two label sites 7 and j interact
and we will leave this term almost unchanged.
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Both potentials, unary and pair-wise, have access to all data x of the set .S of
all image sites. Additionally, the pair-wise potentials also have access to all labels
y globally because the neighborhood Nj of site i of I; (x, y;, y;) may potentially
be the entire image. Those properties of CRFs provide a high degree of flexibility
and we can thus introduce context from very local to global scales into both
terms of the energy term in Eq. 2. However, the standard modelling of the
association potential A; (x,y;) and the interaction potential L;; (x,v:,y;) (e.g.,
[9]) does not fully exploit the possibility of considering labels y and given data
x globally. Much research effort has gone into finding a more general and global
formulation of context through label comparisons in the interaction potential
(e.g., [14,7,3]). Our focus is on exploiting the full flexibility provided by the
CRF definition of the unary potentials of A; (x,y;). We seek a more general and
global incorporation of all data x as done, for example, by Murphy et al. [12].
If we model the association potential A; (x,y;) as a linear model the standard
formulation is:

A; (%,9;) = yiw" h; (x). (3)

Node features h; (x) generated from data x are contained in vector h; (x)
and the corresponding weights, which are tuned during the training process,
are contained in vector w?. We will integrate ISC through the feature vector
and thus h; (x) will be replaced as we will explain in section 3.1. The interaction
potential I;; (x, y;,y;) determines how two sites ¢ and j should interact regarding
all data x (see Eq. 4). Using again a linear model we can write:

Lij (%, i, y5) = Yt vty (X)) . (4)

i;; (x) contains all edge features and vl the weights, respectively. Edge
features p,; (x) can generally be chosen based on any kind of feature derived
from data x. They should however somehow reflect and model the relationship
of the nodes 7 and j that are compared. The standard approaches consist of
either concatenating the feature vectors h; (x) and h; (x) of both nodes or of
subtracting them element-wise. We choose the latter one and p,; (x) is:

pij (x) = [h; (x) = h; (x)]. ()

3 Implicit scene context (ISC)

The idea is to exploit spatial patterns contained in the background class of
a partially labeled image to support object segmentation and classification. We
can then benefit from very large image databases where images are only partially
labeled and learn context although we do not explicitly know all object classes.
In addition to the object classes that have been explicitly labeled for training
we can use patterns existing in the unlabeled part of the data (i.e., labeled as
background class).
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Fig. 1. Principle of implicit context: (a) ranges around the centroid Cgs1 of image
super-pixel S1 (grey levels indicate different labels appointed to the super-pixels with
k-means during training or NN during testing), (b) histograms of cluster labels of the
three ranges R1, R2 and R3.

The following requirements have to be met: We should be able to cope with
very local to global context scales. In addition, we want to keep ISC generically
applicable to multiple kinds of scenes. For example, it should capture context
in terrestrial images of building facades where usually sky is above the facade
and vegetation below but also in aerial images of buildings where no preferred
ordering with attributes like ”"above” and ”below” exists. Thus, we do not want to
rely on any kind of preferred direction. Finally, we want to achieve computational
efficiency and avoid the computation of co-occurrences. In order to meet these
requirements we take the following steps that will be explained in detail in the
following paragraphs:

multi-scale image segmentation into super-pixels and feature computation,
— unsupervised k-means clustering and nearest-neighbor (NN) classification of
the super-pixels based on the previously generated features,

generation of context histograms in three different ranges per super-pixel,
— input as feature vector to the CRF unary potentials.

3.1 Context potential within CRF

During training we first perform an unsupervised classification of all super-pixels.
We could use any kind of unsupervised classifier but for means of speed and
simplicity we chose a k-means clustering followed by a NN classification. As
input to the k-means clustering we use all features h; (x) € h(x) that were
computed per super-pixel. The exact cluster centers K we compute with the
k-means clustering K = Keans (h (%)) are used for the following processing.
Each super-pixel is labeled with y,s; € y,, where y,, contains all unsu-
pervised labels corresponding to the number of chosen cluster centers k. Label
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Yus,i of the super-pixel i of interest is determined via NN and is thus a function
of the minimum mean distance between feature vector h; (x) and the cluster
centers K. Each super-pixel ¢ is assigned the cluster center K. (where ¢ = 1...k
is the cluster center with k the total number of all cluster centers) that is the
closest in feature space. The resulting labeled super-pixels (e.g., with k£ = 6) are
shown schematically in Fig. 1(a). Next, the centroid Cg of each super-pixel is
determined and histograms of labels histg (y,,,) occurring within three different
ranges R around each super-pixel are generated. The number of label occur-
rences y, . within each range R is counted (Fig. 1(b) with three ranges R1, R2,
and R3). We can choose either short or long ranges depending on whether we
would like to incorporate local or global context, respectively. It should be noted
that longer ranges do not lead to any more complex graph structure because no
graph is set up at this point. Furthermore, the number of the ranges and either
coarse or fine scaling enables us to capture the distribution of object categories
contained in the background class as a function of their distance to the node
of interest. Then, various moments and additional information representing the
contextual patterns in the environment of a particular super-pixel are derived
from the histograms. We use qualitative, quantitative, and spatial context fea-
tures C (h (x)) (e.g., most often occurring label). For testing we apply exactly
the same processing steps but drop the k-means clustering. The cluster centers
K that were determined during training are passed to testing and the NN cluster
centers to the nodes of the test data are computed. Thus, all super-pixels of the
test data are labeled corresponding to the unsupervised classification performed
during training. The implicit context features C; (h(x)) of the test data are
computed and introduced into a linear model:

A; (x,y:) = yiw" C; (h(x)) (6)

We can then either determine the class of each super-pixel ¢ merely based on
implicit context features C; (h(x)) or also add the local node features h; (x) to
the feature vector. The pair-wise potentials only change in such a way (cf. Eq.
5) that the element-wise absolute differences between nodes ¢ and j in the graph
are now computed based on the corresponding implicit context features:

1 (x) = abs (C; (h(x)) — C; (h (x))) (7)

We do not perform any normalization of the label count in the histogram,
for example, based on the size of the super-pixels because tests show that the
importance of a super-pixel does not necessarily increase with its size. In other
words, small super-pixels may be characteristic context features and thus are of
high relevance for a particular object class.

4 Experiments

We perform several experiments with partially labeled data in order to assess
the benefits of ISC-CRF. Only one object category is semantically annotated
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Fig. 2. Results with simulated data, eTRIMS [8] facade images, algae, and Graz-02
cars [13]: true positives (green), false positives (red) and false negatives (blue) without
implicit scene context (b, e, h, k) and with implicit scene context (c, f, i, 1).

in training data and all other categories are labeled as background. First, we
demonstrate the performance improvements achieved with ISC-CRF compared
to a standard CRF for different object classes and background patterns (4.1).
Second, we evaluate the impact of different cluster center numbers and, third,
we assess the robustness to noise (4.2). Quickshift [19] is used for super-pixel
generation. If a super-pixel extends across an object boundary it may not be
repaired later on in the process. We thus over-segment all images to ensure con-
sistency of object boundaries and super-pixels. In order to avoid unstable feature
distributions of too small super-pixels we generate a segmentation in three dif-
ferent scales. Super-pixels sharing a common boundary at the highest scale are
linked with edges in the graph. Features of coarser-scale super-pixels are writ-
ten to the vectors of the highest-scale super-pixels they contain. As features
h; (x) of a super-pixel we compute the first two moments of the color infor-
mation and oriented gradient histogram features. We select those very simple
features for reasons of transparency and ease of replicability. A subset of differ-
ent benchmark data sets (nine images out of each) is used to verify the proposed
ISC-CRF concept. A quadratic expansion of the feature vectors is done as de-
scribed by Kumar and Hebert [9] in order to introduce a more precise quadratic
decision surface. We apply the quasi-Newton method limited-memory Broyden-
Fletcher-Goldfarb-Shanno (L-BFGS) for parameter estimation and loopy belief
propagation for approximate inference using Mark Schmidt’s toolbox [16]. Cross-
validation is performed with two thirds of the data for training and one third
for testing (as recommended by Crowther and Cox [2]) in order to compute true
positive rate (TPR) and false positive rate (FPR) pixel-wise. The TPR is the
percentage of all correctly labeled object pixels and the FPR is the percentage
of all background pixels that are misclassified as object.
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Table 1. TPR and FPR in % of standard CRF and ISC-CRF

CRF ISC-CRF
Data TPR FPR TPR FPR
Simulation 85.9 6.8 85.9 0.8
eTRIMS facades 86.9 22.1 88.1 7.3
Algae 75.7 37.0 84.5 23.7
Graz-02 cars 86.6 16.4 88.1 4.3

4.1 Classification of objects in different scenes

In order to verify the general applicability of the implicit scene context we per-
form tests with four different object class scenes: with simulated aerial images of
an urban scene, with facade images taken from the e TRIMS benchmark data [8],
with Google™ images of algae and with car images of the Graz-02 benchmark
data [13]. Those four object class categories are chosen because they represent
different spatial object and background distributions. Many small objects (build-
ings) embedded into background context are contained in the simulated urban
scene (Fig. 2(a)). Small irregular objects entirely surrounded by background
context are the cars (Fig. 2(d)), single very large objects (facades) with clear
straight boundaries and with background context only above and below are the
building facades (Fig. 2(g)) and large but frayed objects partially surrounded
by background context are the algae (Fig. 2(j)). A good performance of the im-
plicit scene context approach for all tasks would support the claim of general
applicability to any kind of image scene.

The classification performance results of the test data are summarized in
Table 1. Example images and the corresponding results are shown in Fig. 2.
In all four cases the ISC-CRF decreases the FPR significantly in comparison
to the standard CRF. On an Intel™ Core i7 2.4 Ghz CPU, 12 GB RAM the
computation time using the implicit scene context potential does only marginally
increase by several seconds per image.

4.2 Parameter assessment with simulated data

The context ranges, the number of k-means cluster centers, and the segmen-
tation scales are currently adapted manually to each data set. The previously
introduced simulated urban scene (see example in Fig. 2(a)) is used to evaluate
the impact of varying cluster centers because we know the exact number of ob-
ject categories contained in the data: buildings (red and gray rectangles), trees
(dark green circles), grassland (light green background) and streets (light gray
lines). The buildings are our labeled object class and all other object categories
are contained in the background class. Only color features are used for these
tests leading to five distinct clusters due to the building class consisting of red
and dark gray buildings. We use three different ranges (10, 20, and 30 pixel radii)
and perform tests with five up to 50 cluster centers. The FPR of each test is
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Fig. 3. FPR of ISC-CRF (blue) and standard CRF (red) classification of simulated
data: (a) with varying numbers of k-means cluster centers and (b) with different noise
levels.

displayed in blue Fig. 3(a) whereas the FPR, of the standard CRF is displayed in
red. The FPR varies about 1 % (from 0.8 % to 1.8 %) and no significant trend
is observable. Changing the number of k-means cluster centers has a very small
impact on the classification performance but of course on computation time.
A rather small number of cluster centers is beneficial. The radii of the context
ranges and the segmentation scale are adapted to each scene separately because
both parameters depend on the scales of context and objects. This makes the
ISC-CRF highly flexible and easy to adapt to new scenes. Both parameters could
also be introduced into the learning step without major changes to the general
framework.

Second, we test if the ISC-CRF is robust to image noise and whether we
gain robustness compared to a standard CRF. Several gaussian noise levels with
mean zero and standard deviations up to 100 % (corresponding to 256 in our
case of 8 bit RGB channels) are generated and added to the RGB channels of
the simulated data, which is then cropped in order to keep all values between
zero and 255. Cross-validation tests with CRF and ISC-CRF is done and FPR is
recorded. In figure 3(b) FPR of the standard CRF (red) and FPR of ISC-CRF
(blue) of all tested noise levels are displayed. For all noise levels the FPR of the
ISC-CRF stays below that of the standard CRF. Furthermore, the ISC-CRF is
slightly more robust to noise because its FPR starts increasing later (approx. 90
% vs. approx. 80 %).

5 Conclusions and future work

In this paper we have introduced the concept of implicit scene context to learn
context in an unsupervised way from the background class. Tests with four
different scene types have shown that the ISC-CRF decreases the FPR while
increasing the TPR compared to a standard CRF. We have demonstrated that
different spatial object and background distributions can be captured via the
context histograms. In future work we want to integrate more complex features
and feature combinations, test our method on complete benchmark datasets,
and learn those parameters that are currently chosen empirically.
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