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Abstract. Up-to-date Synthetic Aperture Radar (SAR) sensors are able of 

acquiring imagery of sub-meter resolution. This very high resolution makes them 
an appropriate tool for the mapping of buildings in urban areas. Optical data may 

help to fill in gaps that are due to occlusions or signal mixtures caused by layover. 

We combine features of airborne interferometric SAR (InSAR) data and optical 
aerial images for classifying an urban scene into building and non-building sites. A 

Generalized Linear Model (GLM) within a Conditional Random Field (CRF) 

framework is, first, trained on features and, second, applied to a test site for 
inference. We then provide some concepts how the two different sensor 

geometries may be exploited for building height estimation once buildings have 

been detected. 
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Introduction 

Single objects or even parts of them can be distinguished in data of very high-

resolution SAR sensors. This can be seen in Fig. 1 where we compare a high resolution 

spotlight image of the TerraSAR-X satellite with an aerial optical image. The main 

building of the Leibniz Universität Hannover and various parts of it are captured by the 

SAR sensor. Layover and shadowing effects that are due to the slant range measuring 

principle occur. The optical data provides complementary information (e.g., color and 

texture) to the SAR data and may thus facilitate automatic object extraction [7-9]. We 

also see that in both images the main building is surrounded by various other objects 

like streets, trees, and other buildings. Those objects are the context of the object of 

interest. We may exploit this typical context in urban scenes in order to derive a more 

powerful and expressive building detection approach. But instead of introducing a 

model-based approach, which would potentially work well for a particular scene but 

fail for others, our aim is to learn context generically within a probabilistic framework. 

A method that meets the aforementioned requirements is Conditional Random Fields 

(CRF). CRFs were originally introduced by Lafferty et al. [10] for labeling one-
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dimensional data and then adapted to imagery by Kumar and Hebert [11]. They are a 

probabilistic discriminative approach providing high modeling flexibility in terms of 

context integration. CRFs have already been applied to various computer vision tasks 

[11,16-17] and also for object detection in remote sensing data [12,15,19].  

Once buildings have successfully been detected we may think of reconstructing 

them three-dimensionally [1-6,18]. Inherent effects like layover and shadowing contain 

height information. Additionally, the different sensor geometries of the SAR and the 

optical sensor may be used in order to combine features of both data sets to estimate 

building heights under the assumption of locally flat terrain.  

The paper is organized as follows: First, Conditional Random Fields are 

introduced before we explain some inherent optical and SAR effects that are helpful for 

building height determination. We then apply our methods to some test data: features 

are extracted in SAR and optical data, buildings are detected with CRFs and building 

heights are estimated. Results are discussed and finally conclusions are drawn and 

ideas for future improvements are presented.   

1. Conditional Random Fields 

An overview of the general CRF framework we use is given in this section. Then, 

we introduce the basic formulae of our modified approach that better adapts to the task 

of building detection in urban areas.  

CRFs are graphical models. They model relations between image sites through a 

network of nodes and edges. Since we are dealing with images, nodes may for example 

represent spatial entities like pixels, square image patches or irregular image segments. 

Edges link the nodes and carry information about how they should interact. This 

property enables us to introduce some prior knowledge we have by choosing a 

particular design of the edges. CRFs belong to the family of undirected graphical 

models (i.e., Random Fields) as opposed to directed graphical models like Bayesian 

networks. In contrast to Markov Random Fields (MRF), which are generative models 

because they model the joint probability P(x,y), CRFs are discriminative models. They 

directly model the posterior probabilities P(y|x) of labels y given observations x 

through products of local marginal and conditional probabilities of adjacent nodes. 

Instead of providing only crisp decisions whether a pixel belongs to class building or 

non-building, we obtain probabilities for each node. This becomes convenient if we 

want to be flexible in terms of post-processing.  

In the standard formulation, CRFs consist of two main terms (Eq. 1): the 

association potential Ai(x,yi) and the interaction potential Iij(x,yi,yj). The association 

potential evaluates how likely it is that a node i is labeled with label yi given all data x. 

We may use any discriminative classifier for the association potential. In the interaction 

potential we model context-knowledge. It describes how two label sites i and j interact 

 
a 
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Figure 1.  Comparison of SAR and optical image: the main building of the Leibniz Universität 
Hannover imaged by (a) the TerraSAR-X satellite (© DLR) (high resolution spotlight mode, resolution 

approx. 1m , range direction left to right) and by (b) an optical aerial sensor (© Geoinformation Stadt 

Hannover)  



considering all observations x. In order to transform the node potentials to probabilities 

we have to divide the exponential of the sum of association potential and interaction 

potential through the partition function Z(x). Z(x) acts as a normalization factor and is a 

constant for a given data set.  
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We use a Generalized Linear Model (GLM) for both the association potential 

Ai(x,yi) (Eq. 2) and the interaction potential Iij(x,yi,yj)(Eq. 3). Vector hi(x) contains all 

node features and vector w
T
 contains the weights of the features in hi(x) that are tuned 

during the training process. Vector v
T
 contains the weights of the features, which are 

adjusted during the training process. yi is the label of the site of interest and yj the label 

it is compared to.  
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Various designs of Iij(x,yi,yj) exist [11,17] that are designed for typical computer 

vision tasks. The usual consists of detecting a single rather large instance of an object 

in a relatively small image. We face a different challenge: Our images are large and 

many small instances of the same object occur with narrow gaps in-between. In order 

to avoid over-smoothing effects we introduce an explicit discontinuity constraint. High 

gradients are often found at building boundaries in the optical intensity image. They 

well isolate buildings from their environment. The CRF standard interaction potential 

(Eq. 3) does not fully incorporate this discriminating feature because it only compares 

features of adjacent nodes but nothing in between them. Therefore, we extend the edge 

feature vector µij(x) to µij,mod(x) by element-wise multiplication with a scalar weight 

wdisc,ij [19]. This weight is a function of the mean gradient between two adjacent nodes i 

and j. 
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We introduce the mean gradient into a sigmoid function (Eq. 5) with the inflexion 

position at κ = 0.5 because an investigation of its histogram suggests that values above 

0.5 separate objects of different classes. In order to still allow for the separation of two 

nodes in the absence of high gradients we shift the sigmoid function in y-direction.   

In order to learn the parameters of our CRF, which are simply the feature weights 



within the vectors v and w, we have to set up an objective function O(w,v). In order to 

ensure a global optimum our objective function should either be concave (global 

maximum) or convex (global minimum). A common way to achieve a concave 

objective function is to use the log-likelihood of the posterior probabilities P(y|x) (Eq. 

6).       
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By substituting the CRF posterior probabilities of Eq. 1 into Eq. 6 we obtain the 

objective function (Eq. 7). 

 

       , , , , log
i

i i ij i j

i S i S j N

O A y I y y Z
  

 
   
 
 w v x x x                (7) 

 

We use the limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) [20] 

method as optimizer to train the association potential and the interaction potential 

simultaneously. For inference we use Loopy Belief Propagation (LBP) [21]. 

2. Building height estimation 

Once we have detected buildings we may wish to get some knowledge about their 

heights. The previous two-dimensional detection provides horizontal building 

boundaries and an additional height information would allow for a three-dimensional 

reconstruction. Our aim is to investigate effects inherent in the data that contain height 

information.  

 

An obvious height information source that first comes into one's mind is the 

InSAR heights. Currently, a rather simple InSAR height extraction procedure is applied 

for testing purposes. Initially, the previously extracted double-bounce lines of one of 

the two SAR amplitude images are extended to parallelograms towards the SAR sensor 

position in slant range geometry. We then turn to the interferometric heights in slant 

  

 

a b 
Figure 1.  (a) Sketch of height estimation using SAR double-bounce line db (black) and 

overlapping building roof edge (E' is projected to e) of the optical image, (b) double-bounce lines (red) 

overlaid to a cut-out of the optical orthophoto.  



range geometry and overlay the parallelograms. Thus, the InSAR layover phase ramp is 

fully contained within the parallelogram of a particular building. We set the width of 

the parallelogram according to the SAR acquisition parameters and the expected 

maximum building height of the particular urban scene. Next, the maximum height 

within each parallelogram (i.e., the maximum height of each phase ramp) is assigned to 

the corresponding building. It should be noticed that we have not done any phase-

unwrapping yet which is hard to conduct in urban environments with strong signal 

mixtures and abrupt height changes. In order to help circumvent this issue we make use 

of the optical data. Buildings in the optical image appear distorted due to the central 

perspective of the aerial camera. In the image this translates to a building's facade being 

visible and its roof being mapped with an offset of the building's footprint. A distortion 

of a particular building (given the acquisition parameters) is a function of its height h 

and its distance to the nadir point N of the camera (within the image). If we know those 

parameters, we simply have to measure the offset between a roof edge and the  building 

footprint. An increasing offset indicates a higher building. Reconsidering our feature 

extracted from the SAR data, we see that double-bounce lines are located exactly at the 

boundary of the building footprint facing the SAR sensor. All double-bounce lines are 

located at ground height. If we overlay the extracted double-bounce lines (see details of 

extraction procedure in [13]) with the optical image, the building roof edge (E') in the 

optical image falls over the double-bounce line db (E' is mapped to e). Then, we are 

able to calculate building height h from the flying altitude of the aerial camera H and 

the ratio of  distances Δdb and Δe. Δdb describes the distance of the double-bounce line 

to the nadir N. Δe is the distance between the roof edge of a building to the nadir N. 
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3. Results and discussion 

In order to assess the current status of our research we do some experiments with 

test data. The proposed methods are tested using an aerial orthophoto of 0.31 meters 

ground sampling distance and airborne InSAR data acquired by the Intermap 

Technologies Aes-1 sensor of approximately the same resolution. The test scene shows 

a part of the city of Dorsten in Germany. First, we perform building detection based on 

combined optical and InSAR features. Second, we manually extract the footprints of 

some large flat-roofed buildings in the scene and apply our height determination 

methods. 

3.1. Building detection 

We have introduced the CRF classification framework in the first section. Vector 

hi(x) in Eq. 2 contains the features that discriminate buildings from the rest of the data. 

We remind the reader that the context term (the interaction potential) is also based on 

those features as shown in Eq. 4. For our testing purpose we take rather simple features 

as input to hi(x). Mean and variance of the red channel, the blue channel, the hue, 

features based on the gradient orientation histogram of the intensity image, and some 



Haralick features are used. The most reliable InSAR feature is the already previously 

mentioned building double-bounce line [5,13], which is located where the near-range 

building walls meet the ground (see db in Fig. 1a). Using those simple features and the 

modified  interaction potential (Eq. 4,5) we achieve a true positive rate (TPR) of 85% 

and a false positive rate (FPR) of 29% (see results of three test images in Fig. 2). A 

more detailed analysis of the results (with a slightly modified interaction potential) can 

be found in [15]. 

3.2. Building height estimation 

A small test region containing relatively high flat-roofed buildings (see test region 

overview in Fig. 3c) and estimate their heights in the two different ways described in 

section 3 (see results in Fig. 3a,b). The flying height H above ground was 3900 m. We 

compare the estimated building heights (Fig. 3a,b) to the LIDAR reference. Over-

estimated building heights are shown in dark grey and under-estimated heights in light 

grey for each building separately. In Fig. 3a it can be observed that, in general, the 

InSAR height slightly under-estimates the building heights (mean error -2.8 meters). 

This is due to ambiguous phase to height conversions because we have not done any 

phase-unwrapping. We can see this at the high buildings on the right side of Fig. 3a 

where the actual building height has been under-estimated more than 50%. Thus, a next 

step will be to integrate the height estimated with the supplementary optical data in 

order to support phase-unwrapping. The combined use of the double-bounce line and 

the overlapping buildings in the optical image gives better results. It slightly over-

estimates the building heights (mean error 1.6 meters, Fig. 3b). 
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Figure 2.  (a) Sketch of height estimation using SAR double-bounce line db (black) and 
overlapping building roof edge (E' is projected to e) of the optical image, (b) double-bounce lines (red) 

overlaid to a cut-out of the optical orthophoto.  



4. Conclusions and outlook 

We have shown that a context-based approach using GLMs within a CRF framework 

provide good results for building detection in urban areas. Heights of the detected 

buildings can then be determined based on a combination of SAR double-bounce lines 

and distortions in the optical image that are caused by the central perspective of the 

aerial camera. One factor limiting the performance of the CRFs is the regular grid of 

image patches we use for classification. Those patches do not consider image 

information and thus building and non-building areas are often merged within one 

patch. This is the reason for less discriminative feature distributions. Therefore, we are 

currently testing CRFs set up on an initial segmentation that well preserves object 

boundaries. A graphical model on image segments would also allow us a more 

expressive integration of the image gradients as discontinuity constraint. In addition, 

we will have to test our classification approach on a second test site with data of 

different sensors in order to get a more generally valid performance evaluation.  

Considering building height estimation we will integrate all possibilities into one joint 

least squares adjustment. We also need to test the presented ideas on a second data set.    
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Figure 3.  Estimated building heights assigned to building footprints: (a) differences of InSAR 
heights to LIDAR reference and (b) differences of heights calculated from overlapping optical data and 

double-bounce lines to LIDAR heights (light grey: height estimated too low, dark grey: height estimated 

too high), (c) aerial orthophoto of the test region  
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