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Abstract— Modern space borne SAR sensors provide geometric 

resolution of one meter, airborne systems even higher. In data of 

this kind many features of urban objects become visible, which 

were beyond the scope of radar remote sensing only a few years 

ago. However, layover and occlusion issues inevitably arise in 

undulated terrain and urban areas because of the side-looking 

SAR sensor principle. In order to support interpretation, SAR 

data are often analyzed using additional complementary 

information provided by maps or other remote sensing imagery. 

The focus of this paper is on building extraction in urban scenes 

by means of combined InSAR data and optical aerial imagery.  
 

I.  INTRODUCTION 

In the last decades, synthetic aperture radar (SAR) has 
become a key remote sensing technique due to its all-weather 
capability and independence of daylight. However, the coarse 
geometric resolution of tens of meters of satellite data limited 
its use to large scale applications until recently. In contrast, 
today’s state-of-the-art space borne sensors like TerraSAR-X 
and Cosmo-SkyMed provide geometric resolution of one 
meter, while airborne SAR sensors acquire imagery of even 
finer grid. In such very high resolution imagery the geometric 
extent of individual ground objects like buildings, bridges and 
roads becomes visible and can hence be exploited for various 
applications. One main application arises in crisis situations 
when the immediate acquisition of an urban scene is required 
for rapid hazard response. However, the SAR typical effects 
layover and shadowing complicate the interpretation in urban 
scenes.  Three-dimensional objects are situated closely together 
and therefore small buildings are occluded by higher ones 
while facades overlap with trees and cars on the streets. 
Additionally, the appearance of a particular building in the 
image depends on the aspect angle of the sensor. Buildings that 
are not oriented in azimuth direction with respect to the sensor 
are often hard to detect. This drawback can be partly overcome 
by using Interferometric SAR (InSAR) acquisitions from two 
orthogonal flight directions [1]. InSAR has the advantage of 
providing height information which facilitates detection and 
three-dimensional modeling of buildings. Multi-aspect InSAR 
data from four aspects is used for model-based building 
detection and reconstruction in [2]. Height information of 
buildings can also be deduced from stereoscopic measurements 

[3]. Large rectangular flat-roofed buildings are detected and 
modeled based on characteristic combinations of extracted line 
features. Another approach for the detection and three-
dimensional reconstruction of buildings with rather simple 
shapes, based on parallel line features extracted from SAR 
intensity images of four different aspects, is presented in [4]. In 
[5] model-based building detection from a single SAR 
amplitude image is carried out using stochastic geometry. 

None-the-less, automatic urban scene analysis based on 
SAR data alone is hard to accomplish. As a consequence, it is 
helpful to analyze SAR data in combination with additional 
information from GIS databases or high-resolution optical 
imagery. Optical imagery has the advantage of being widely 
available. In [6] high-resolution InSAR data is combined with 
an optical aerial image in order to reconstruct bridges over 
water. Height information is deduced from the InSAR data 
while the exact position of the bridges and their horizontal 
extent is determined using the corresponding optical image. 
Automatic extraction of building footprints based on line 
features by means of a SAR amplitude image and an optical 
aerial image is presented in [7]. Furthermore, an aerial photo is 
used in [8] in order to regularize outcomes from 
radargrammetric processing of a SAR image pair by means of 
Markov Random Fields applied to a region adjacency graph.     

This paper presents an approach for building detection in 
dense urban areas combining line features from mono-aspect 
InSAR data with classification results from an optical aerial 
image. First concepts are discussed and further ideas for three-
dimensional modeling of urban scenes are outlined.  

II. INSAR SIGNATURE OF BUILDINGS 

The signature of buildings in InSAR imagery depends on 
sensor parameters, on properties of the imaged object itself, 
and on its direct environment. This chapter focuses on the 
characteristics of different building types in magnitude images 
and in phase images. 

A. Signature in magnitude data 

The building signature in optical and SAR images is 
characterized by the different mapping geometries, the central 
projection and the slant range projection, respectively. 
Examples of flat-roofed and gable-roofed buildings in optical 
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and InSAR data are given in Fig. 1. In the second column from 
the left, the expected appearance of these two building types is 
displayed schematically.  Effects that occur if the scene is 
illuminated from two orthogonal flight directions are 
investigated in [9]. The appearance of a building in a SAR 
image is characterized by the side looking viewing geometry of 
the sensor, the range measurement, and poor resolution in 
elevation direction. Its signature consists of layover, corner 
reflector between ground and building wall, roof signal, and 
radar shadow. 

The layover area is the building signal situated the closest 
to the sensor because it has the smallest distance to the sensor. 
It usually appears bright due to superposition of backscatter 
from ground, façade, and roof. By comparing the layover of the 
flat-roofed and the gable-roofed example, a subdivision of the 
layover area is possible according to building dimensions and 
illumination geometry [1]. This is also observable in the real 
magnitude data (Fig. 1 third column). The bright line of the 
flat-roofed signature and the second line (relative to the sensor 
position) of the gable-roofed signature is the corner reflector 
line. It is caused by a dihedral corner reflector spanned by 
ground and building wall. This line is part of the building 
footprint and can be distinguished from other lines of bright 
scattering using the InSAR phases (see next paragraph). The 
subsequent single backscatter signal of the building roof is 
usually scattered away from the sensor. Thus, it is rarely 
observable, depending on the roof structure and illumination 
geometry. Behind the building, the ground is partly occluded 
by the building shadow, which appears as a dark region. 
Magnitude changes of the building signature due to 
illumination direction and building geometry are described in 
more detail for flat-roofed buildings in [1] and for gable-roofed 
buildings in [9], respectively. 

B. Signature in phase data 

Different building types lead to specific patterns in the 
interferometric phase data (Fig. 1 fourth column). The phase 
value of a single range cell results from a mixture of the 
backscatter of different contributors, such as ground, façade, 
and roof in the layover area. The phase signature of flat-roofed 
buildings is characterized by a layover region (in Fig. 1, last 
column colored in dark gray), and a homogeneous roof region 
(in Fig. 1 not observable because of the low building width). 
Gable-roofed buildings also feature a phase signature showing 
the layover area, which is colored in lighter gray because of the 
smaller building height. The phase of the terrain enclosing the 
building signature is displayed slightly darker. A similar phase 
value is calculated at the building corner location, which is 
used for the detection of building footprints. Behind the 
layover area a shadow area, characterized by a noisy phase 
distribution, is observable. Dependencies of the phase signature 
on illumination direction and building geometry are described 
in more detail in [10]. 

III. BUILDING DETECTION IN INSAR DATA 

The recognition of buildings in InSAR data is based on the 
detection of parts of the building footprint in this approach. 
First, bright lines are segmented from the magnitude data. 
Subsequently, the lines caused by a dihedral corner reflector 
spanned by ground and building wall are detected based on a 
local InSAR height analysis. Finally, these building hints are 
projected into the same ground range geometry as the optical 
data. 

A. Extraction of building features 

The segmentation of primitives exploits the previously 
discussed bright lines in the magnitude signature of flat-roofed 
and gable-roofed buildings. The so-called corner line, part of 
the building footprint, is distinctive for both signatures. The 
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Figure 1   Signature of flat- (first row) and gable-roofed (second row) buildings in optical data (first column), in SAR magnitude data (third column) and InSAR 

phase data (forth column); schematic view of magnitude signature in SAR data (second column) 
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full process of corner line detection is shown in 
Fig. 2, first row. 

The line detection is carried out in slant range geometry.  
An adapted ratio line detector according to [11] is applied to 
the original magnitude image (Fig. 2 “Magnitude”). This 
template detector determines the probability of a pixel of 
belonging to a line. In this case, eight different template 
orientations are considered. The probability image for a vertical 
template orientation is shown in Fig. 2 “Line”. Thereafter, the 
line segments are filtered based on the eight probability images 
and their respective window orientation. The resulting 
segments are fitted to straight lines and edges, respectively, by 
linear approximation and subsequent prolongation 
(yellow lines in Fig. 2).  

B. Geocoding of building features 

After line extraction, the interferometric heights are 
calculated [1].  In order to discriminate between lines caused 
by direct reflection, lines due to double-reflection between 
ground and wall or lines as a result of double-reflection 
between roof and substructures, we investigate the local InSAR 
heights. Only areas of high coherence value and an InSAR 
height value close to the global mean terrain height are 
considered for further processing. Based on this filter, a local 
InSAR height value is calculated over an area of 50 m x 50 m 
in ground range geometry. This step results in a DTM (Digital 
Terrain Model). Thereafter, the height differences between 
InSAR DSM (Digital Surface Model) and DTM are calculated. 
A line is considered a building corner line if there is a region 
with significant height difference located next to it. The 
outcome are real corner lines (Fig. 2 red lines), caused by 
double-bounce reflection between ground and building wall. 
The projection of the corner lines from slant range geometry to 
ground geometry is carried out using the InSAR heights. The 
resulting geographic position of the corner lines superimposed 
onto the optical image is displayed in Fig. 3e and Fig. 4c. 

IV. BUILDING DETECTION IN OPTICAL IMAGERY 

Building roofs in the optical image are extracted using a 
model-based approach introduced in [12] which will be 
outlined in this chapter. It consists of a low-level and a high-
level image processing step. The low-level step includes 
transformation of the image to HSI (Hue Saturation Intensity) 

representation, a segmentation of the intensity image and the 
application of morphological operators in order to close holes. 
Features are extracted for all regions and the final classification 
takes place at the end of the following high-level step.    

First of all, the input image in RGB (Red Green Blue) color 
space is transformed to HSI space. The intensity of the image 
and its hue are of interest for further processing while 
saturation is not used in this case. A region growing algorithm 
is applied to the intensity channel in order to find homogeneous 
roof regions. It is initialized with seed points that are 
distributed over the image with a raster size adapted to the 
expected roof size. The assumption is made that building roofs 
usually appear red, brownish, or grey in optical imagery from 
airborne sensors. Hence, roofs are expected to show high 
values in the red channel of the RGB image. Consequentially, a 
histogram of the red channel of each seed point region is 
calculated and a pixel with the maximum reddishness is chosen 
as the seed point. In order to prevent seed points from falling 
into shadow regions, a threshold is applied to the histogram of 
the red channel. In case no pixel with a grey value greater than 
the threshold is present in the region, the region is not 
considered as a potential roof and no seed point is set.  

Secondly, opening and closing is carried out to prepare the 
regions for feature extraction and classification. Thereafter, 
regions belonging to the same roof are merged. This step is 
particularly important for gable-roofed buildings because very 
often the roof is split at the roof ridge due to different 
illumination of the two roof sides. The outcomes of this step 
are roof hypothesis, regions that potentially are building roofs. 

Third, features are extracted for each roof hypothesis in 
order to prepare for classification. Four different feature types 
are used, based on geometry, shape, radiometry, and structure. 
Geometric features are the region size and its perimeter. The 
shape of a building region is described by its compactness, 
length, and characteristic angles which are of interest because 
they often distinguish rectangular buildings from natural 
objects like trees. Since most building roofs are considered to 
be rather grey or red, radiometry is useful to reject regions with 
different colors. Hence, the hue angle is determined in order to 
cancel out regions with a high percentage of green pixels. 
Structural features that are useful to evaluate a building roof 
hypothesis are neighboring building regions and shadows cast 
by the potential building. In urban areas, building rows are 
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Figure 2  First row shows step by step process of building corner segmentation in slant range geometry; second row shows steps of filtering the InSAR heights to 

filter and project building corners from slant into ground range geometry 
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often aligned along one side of a street. Rarely, buildings stand 
alone without any close neighbors. Shadows are good hints for 
elevated objects. In order to not take into account shadows cast 
by trees, only shadows with relatively straight borders are 
considered as belonging to buildings.  

Finally, a classification based on the previously determined 
feature vector takes place (see chapter V.B. for details). All 
necessary evaluation intervals and thresholds were learned 
from manually classified training regions.  

V. FUSION OF DETECTION OUTCOMES 

In order to accurately combine features from the InSAR 
data and the optical image, different sensor geometries and 
projections have to be considered carefully. It is required that 
both feature sets are projected to the same geometry, i.e., all 
data have to be transformed to a common coordinate system 
[13]. In addition, a fusion and classification framework for 
combining the detection outcomes from the optical image and 
from the InSAR data has to be set up.  

A. Sensor geometries 

Optical sensors are passive sensors that may acquire images 
with small off-nadir angles. The imaging principle consists of 
measuring angles while no direct distances to the objects on the 
ground are measured. Building roofs that are not located 
directly in nadir view are displaced away from the sensor. The 
higher the building is and the further away it is located from 
the nadir axis of the optical sensor, the more the building roof 
is displaced. 

By contrast, SAR sensors are active sensors acquiring 
images with high off-nadir angles. Their imaging technique 
relies on measuring slant ranges to ground objects while their 
angular resolution in elevation direction is very poor. This 
leads to foreshortening, layover and shadowing effects (see 
chapter II). Hence, elevated objects are displaced towards the 
sensor. The degree of displacement depends on the object 
height and the off-nadir angle. 

Fig. 3a shows the basic difference between SAR and optical 
viewing geometry under the assumption of locally flat terrain. 
In the optical image, the elevated object P gets mapped to point 
PO while it is mapped to PS in the SAR image. The higher P, 
the further away P from the optical nadir axis and the greater 
the off-nadir angle θ1 becomes, the longer the distance between 
PO and PS will get.   

The optical image was ortho-rectified by means of a DTM 
before the building detection algorithm explained in chapter IV 
was applied. Hence, distortions introduced by undulated terrain 
are decreased. However, distortions due to elevated objects that 
are not present in the terrain model, as the buildings 
themselves, remain in the image and building facades are 
visible. As a consequence, extracted roof regions tend to be 
slightly shifted away from the sensor if only the building roof 
has been detected. The displacement effect can be seen in Fig. 
3c to 3e. In Fig. 3b the cadastral boundaries of a building are 
superimposed onto the corresponding LIDAR heights. Such 
boundaries fit very well to the LIDAR heights but not to the 
building roof in the optical image (Fig. 3c). In Fig. 3d the 
LIDAR heights are overlaid with the corner line extracted from 
InSAR data. The corner line is situated on the edge of the 
building footprint as expected. In Fig. 3e, the same corner line 
is superimposed onto the optical image. It falls onto the 
building roof due to the building’s displacement away from the 
sensor. Such effect is of high interest and can be exploited for 
three-dimensional modeling of the scene [14, 15] since the 
distance between the corner line and the building edge 
comprises height information.    

B. Joint classification framework 

After having projected both the optical features and the 
InSAR features to the same geometry, a joint classification of 
both feature sets is conducted. A variety of data fusion 
approaches exist that are usually applied on pixel level. In [16] 
and [17] data fusion based on Bayesian inference is proposed. 
Another possibility is to use the Dempster-Shafer evidential 
theory [17]. Both approaches are usually based on the 
assumption that an object is represented identically in the 
different sensor outputs, i.e., exactly the same region is found 
in both datasets but with slightly different classification results. 
This assumption is not readily valid in our case because a 
combination of regions and lines is carried out. Therefore, a 
very simple method is used for feature fusion and joint 
classification.  

The extracted lines from the InSAR data are integrated into 
the linear regression classifier that was used for detection of 
roof regions in the optical image. Each region detected by the 
algorithm outlined in chapter IV is evaluated based on several 
features from the optical image and the InSAR double bounce 
lines. The optical features have already been mentioned in the 
previous chapter. For integration of the InSAR double bounce 
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Figure 3  Comparison of SAR and optical viewing geometry (a); LIDAR data (b) and optical data (c) overlaid with cadastral building footprint; LIDAR data (d) 

and optical data (e) overlaid with detected building corner 
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lines, all building regions are first enlarged by two dilations, 
i.e., the entire region is enlarged by a two pixel wide buffer 
enclosing the original region. This corresponds to 
approximately 0.6 meters in object space. A region is 
considered to be a roof region if a certain length of a double 
bounce line lies inside the region.   

A quality measure is assigned to each region. It has to be 
highlighted that this quality measure cannot be interpreted as a 
probability. Initially, this value is set to one. Subsequently, an 
evaluation of each region based on its feature vector is done. In 
case a certain feature does not completely support the building 
hypothesis, the quality measure is multiplied by a reduction 
value between one and zero. The new value of the quality 
measure is again multiplied by another reduction value if the 
next feature does not completely support the building 
hypothesis and so on. The exact reduction value for each 
feature is learned from a training data set of manually classified 
buildings. The evaluation procedure is done separately for 
optical features and InSAR features. The overall quality 
measure is obtained by summing up the optical quality measure 
and the InSAR quality measure after both measures have been 
multiplied separately by weighting factors. Since much more 

information about the building regions is derived from the 
optical image, the optical data is believed to contribute two 
thirds to the final result while the InSAR data contributes one 
third. Hence, the weight for the optical quality measure is set to 
0.666 and the InSAR quality measure weight is set to 0.333. In 
case neither an optical feature nor an InSAR feature decreases 
the quality measure, both quality measures sum up to one. 
Finally, all regions that have an evaluation value greater than a 
threshold are classified as buildings. Such threshold is 
determined empirically. It was set to 0.6 in this case. Hence, a 
region may be classified as a building even if there is no hint 
from the InSAR data, but strong evidence from the photo.  

VI. RESULTS 

The investigated single look complex InSAR data set was 
recorded by the AeS-1 sensor system of Intermap Technologies 
with a spatial resolution of about 38 cm in range and 16 cm in 
azimuth direction. The two X-Band sensors operated with 
effective baseline B ≈ 2.4 m. The mapped residential area in 
the city of Dorsten in Germany is characterized by a mixture of 
flat-roofed and gable-roofed buildings and low terrain 
undulation. 
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Figure 4  Results of building corner line segmentation based on InSAR data (a, c), of building detection based on optical data (b), and of building detection based 

on InSAR and optical data (d) 
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Results of the presented approach are displayed in Fig. 4. In 
Fig. 4a a LIDAR DSM of the investigated area is overlaid with 
the corner lines from the InSAR data. It can be seen that some 
of the lines are not situated on building edges. This effect is 
due to erroneous InSAR heights used for the projection from 
slant range geometry to ground geometry. Fig. 4c shows the 
same corner lines superimposed onto the optical image. Some 
of the buildings do not show any corner line close to them. 
This is the case for the row of gable-roofed buildings with 
reddish roofs at the bottom of the image. Missing corner lines 
are first and foremost due to the aspect the InSAR data was 
acquired with. A second reason is that a building may be 
occluded by other elevated objects like trees or another 
building.  

Fig. 4b shows the detected buildings using the classifier 
from [12]. Results are rather poor which is, above all, due to 
the assumption that roofs do not split up into more than two 
regions during the region growing step. As a consequence, 
several gable-roofed buildings with reddish roofs in lower right 
of the image are not detected. Some flat-roofed buildings in the 
upper part of the image are not detected based on optical data 
alone since their color and shape are similar to those of street 
segments. Thus, their evaluation value does not exceed the 
threshold. Final building detection results are enhanced 
considerably by the integration of the InSAR corner lines (Fig. 
4d). The detection rate of buildings could be increased 
significantly while the number of false alarms was reduced 
notably. Some buildings that are hardly recognizable in the 
optical image are detected due to a corner line, e.g. the garage 
between two vertically oriented gable-roofed buildings in the 
lower left of Fig. 4d. Again, the vertically oriented gable-
roofed buildings with reddish roofs in the lower right of Fig. 4d 
are not detected although strong hints from corner lines are 
present. This is due to the previously outlined over-
segmentation during the region growing step.        

VII. CONCLUSION AND OUTLOOK 

In this paper, an approach for the combination of features 
from optical imagery and InSAR data with the goal of building 
detection in urban areas was presented. It has been shown that 
features from InSAR data contribute significant information to 
building detection. The rather poor results from the optical 
classification could very much be improved using InSAR 
corner lines.   

One main disadvantage of the presented classification 
approach is that its quality measures are not interpretable as 
probabilities in a Bayesian sense. Although many parameters 
have been learned from training data, parts of the approach 
appear rather ad-hoc. A next step will thus be the integration of 
the presented approach into a Bayesian framework. 

Another issue to deal with is that the final building 
detection is completely dependent on the very first 
segmentation of the optical image. More advanced processing 
steps have to be developed that correct for ill-shaped regions. 
One idea would be to use the corner lines for shape 
improvements.  
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