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ABSTRACT: 

In this paper we describe the application of genetic algorithms (GA) to unsupervised multi-spectral image 

classification. We shortly review the principles of GA and discuss its iterative nature. One of the main advantages of 

GA is that the number of relevant clusters is derived during the computations rather than having to be determined 

prior to the classification, as is e. g. the case in the well known ISODATA algorithm. So called fitness functions are 

introduced and serve as criteria for controlling the iterations. In particular, we study the Davies-Bouldin, the 

Xie-Beni, and the K-Means Index. We illustrate our work with the help of examples. A multi-spectral satellite 

image is classified into several classes using both, various versions of GA and – as a reference – the ISODATA 

algorithm. The results demonstrate the feasibility of using GA for multi-spectral classification. 
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1. INTRODUCTION 

Multi-spectral image classification, including supervised and 

unsupervised classification, is a major analytical procedure in 

remote sensing. Supervised classification requires a human 

analyst to provide training areas in order to derive associated 

statistical descriptions. In comparison, unsupervised 

classification proceeds with only minimal input. An 

unsupervised classification divides all pixels within an image 

into a corresponding cluster pixel by pixel. Providing class 

labels to the clusters done by a human analyst in a separate 

step after clustering. Typically, the only input an unsupervised 

classification needs is the number of clusters of the scene. 

However, this value is usually not known a priori. Moreover, 

the spectral properties of specific classes within the images can 

change frequently and the relationships between the object 

classes and the spectral information are not always constant, 

and once defined for one image cannot necessarily be extended 

to others. Supervised and unsupervised classification suffers 

from these drawbacks. 

Heuristic unsupervised classification works by establishing 

some mathematical model and then optimizing a predefined 

index to determine the number and centroids of the clusters in 

feature space automatically. Heuristic optimization processes, 

therefore, are seen as a repeatable, accurate, and time-effective 

method to classify remote sensing imagery automatically, 

which is the main objective of this research.  

Genetic algorithms (GA) constitute one possibility for 

heuristic unsupervised classification. They are numerical 

optimization algorithms inspired by the nature evolution 

process and directed random search techniques and were 

introduced by John Holland in 1975 (Holland 1975). GA have 

been widely and successfully applied to optimization problems, 

such as the analysis of time series, water networks, work 

scheduling, and facial recognition (Coley, 1999; Rothlauf, 

2006), which confirm the potential of GA to deliver high 

quality results especially when applied without any ground 

truth (Coley, 1999). Starting from multiple initial solutions 

selected randomly, GA preserve the appropriate solution based 

on a so called fitness function (evaluating index). In this way, 

GA can avoid problems associated with inhomogeneous data 

distributions and automatically select the best solution through 

employing its three standard building blocks: selection, 

crossover, and mutation. 

The research described in this paper focuses mainly on 

integrating GA with different fitness functions and on 

comparing the different results. A software program was 

developed in MATLAB and the GA unsupervised classifier 

was tested on an IKONOS satellite image, using ground truth 

information derived from a topographic map for the estimation 

of classification accuracy. The error matrix (confusion matrix) 

and K-HAT (kappa) statistics were adopted together with 

visual inspection to evaluate the results. Finally, the obtained 

results were compared with those from the traditional 

ISODATA analysis. 

 

2. METHODOLOGY 

In our work we concentrate on using GA for unsupervised 

classification. In GA the number of clusters does not have to 

be determined a priori, but can be determined during an 

iterative computational scheme. So called indices or fitness 

functions are used to determine whether convergence has been 

reached. 

It is known that the choice of the index has a major impact on 

the results. Previous research used different indices, such as 

cluster distance, separation index, Fuzzy C-Means, K-means 

(KMI), Davies-Bouldin Index (DBI), and Xie-Beni Index (XBI) 

(Ross, 1995; Bandyopadhyay and Maulik, 2002). In our work, 

the DBI, XBI, and KMI were adopted. All three of them assign 

a pixel to one cluster only rather then using the concept of 

fuzzy membership. In this sense they form a group of related 

indices, and we believe there is value in comparing them prior 

to possibly extending the study to other indices and/or to a 

fuzzy framework. We also used the ISODATA algorithm to 

validate the effect of GA.  

The following sections describe genetic algorithms and the 

way they can be applied to unsupervised image classification. 



 

3. GENETIC ALGORITHMS 

3.1 Chromosome representation 

In GA applications, the unknown parameters are encoded in 

the form of strings, so-called chromosomes. A chromosome is 

encoded with binary, integer or real numbers. Since 

multi-spectral image data are usually represented by positive 

integers, in this research a chromosome is encoded with units 

(tuples) of positive integer numbers. Each unit represents a 

combination of brightness values, one for each band, and thus 

a potential cluster centroid.  

The length of the chromosome, K, is equivalent to the number 

of units and thus of potential clusters in the classification 

problem. K is selected from the range [Kmin, Kmax], where Kmin 

is usually assigned to 2 unless special cases are considered 

(Bandyopadhyay and Maulik, 2002), and Kmax describes the 

maximum chromosome length, which means the maximum 

number of possible cluster centroids. Kmax must be selected 

according to experience.  

Without assigning the number of clusters in advance, a 

variable string length is used. Invalid (non-existing) clusters 

are represented with negative integer "-1". The values of the 

different chromosomes are then changed in an iterative process 

involving different rules (called crossover and mutation) to 

determine the correct number of clusters (the number of valid 

units in the chromosomes) and the cluster centroids for a given 

classification problem. 

 

3.2 Chromosome representation 

A population is the set of chromosomes. The typical 

population size can range from 20 to 1000 (Coley, 1999). The 

following example is given to explain the representation a the 

population: we assume to have a satellite image with three 

bands; Kmin is set to 2 and Kmax to 8. At the beginning, for each 

chromosome i (i =1, 2,…,.P, where P is the size of population) 

all values are chosen randomly from the data space (universal 

data set; here: positive integers with the appropriate 

radiometric resolution). Such a chromosome belongs to the 

so-called parent generation. One (arbitrary) chromosome of the 

parent generation is given here (note that it contains only five 

valid centroids, since “-1” appears three times in this 

chromosome): 

-1 (110,88,246)  (150,78,226)  -1 (11,104,8)  (50,100,114) – 1 (227,250 192) 

 

3.3 Selection and crossover  

The purpose of selection and crossover (the latter is also called 

recombination) is to create two new individual chromosomes 

from two existing chromosomes selected randomly from the 

crossover pool. The crossover pool contains a percentage (the 

so called crossover percentage) of the current population, 

which constitutes the best chromosomes according to the 

chosen index (see below). Typical crossover operations are 

one-point crossover, two-point crossover, cycle crossover and 

uniform crossover. The following example illustrates a 

one-point crossover operation (the point for crossover is 

situated after the 4th position): 

Parent1: 

-1 (110,88,246)  (150,78,226)  -1 (11,104,8)  (50,100,114) – 1 (227,250 192) 

Parent 2: 

(210, 188, 127) (110,88,246) -1 -1 (122,98,45) -1 (98,174,222) (125,101,233) 

Child 1: 

-1 (110,88,246)  (150,78,226)  -1 (122,98,45) -1 (98,174,222) (125,101,233) 

Child 2: 

(210, 188, 127) (110,88,246) -1 -1 (11,104,8)  (50,100,114) – 1 (227,250 192) 

 

3.4 Mutation 

Mutation follows crossover. During mutation, all the 

chromosomes in the population are checked unit by unit and 

according to a pre-defined probability all values of a specific 

unit may be randomly changed. An example explains this 

procedure; the bold-faced and italic units represent the result 

of the mutation.  

Old string: 

(210, 188, 127) (110,88,246) -1 -1 (122,98,45) -1 (98,174,222) (125,101,233) 

New string: 

(210, 188, 127) (97,22,143) -1 -1 (122,98,45) -1 (98,174,222) (125,101,233) 



 

4. THE FITNESS FUNCTION (INDEX) 

Based on crossover and mutation, the chromosomes, once 

initiated, iteratively evolve from one generation to the next. In 

each generation the fitness function (index) is used to measure 

the fitness or adaptability of each chromosome in the 

population. After calculating the index for each chromosome 

of a given population, the best chromosome is compared to the 

best one of the previous generation (iteration). The termination 

condition for the iterations is that the difference between these 

two values lies below a pre-defined threshold. In case this 

condition holds the best chromosome of the current generation 

is considered as the final result, it contains the number of 

clusters (number of units with values different from “-1”) and 

the cluster centroids (the values of the valid units). If the 

termination condition is not met, the best chromosomes are 

selected into the crossover pool (see above, the number of 

selected chromosomes is given by the crossover percentage) 

and after mutation a new iteration is started. The population 

thus evolves over generations in the attempt to maximize or 

stabilize the index. The computations are also stopped once a 

maximum number of generations is reached. 

The different indices used in this research are described in the 

following. 

 

4.1 Davies-Bouldin Index (DBI) 

The Davies-Bouldin index (DBI) is one possibility to represent 

the fitness of a chromosome (see Eq. (1)~(7)) (Xie and Beni, 

1991; Bezdek and Pal, 1998; Swanepoel, 1999; Martini and 

Schöbel, 2001; Yang and Wu, 2001; Groenen and Jajuga, 

2001). First, each pixel of the whole image is assigned to the 

nearest cluster centroid of the given chromosome by setting 

the corresponding membership value μ to 1; μ is set to 0 for all 

other clusters, see Eq. (1). Next, the average and the standard 

deviation for each cluster are computed (Eq. (2) and (3)), 

followed by determining the Euclidian distance between the 

clusters (Eq. (4)). Subsequently, the value R for each cluster is 

computed as shown in Eq. (5). Then, the average R for all 

clusters in the chromosome is computed. For a chromosome to 

survive this average should be as small as possible, thus the 

DBI is defined as the inverse of the average value for R, see Eq. 

(6), which is equivalent to the clustering with the smallest 

inner-cluster scatter (total variation) and the largest cluster 

separation. 
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where  

xi = pixel i with grey values x (one for each band) 

uk = grey values of kth cluster centroid 

μi,k = membership function of each pixel xi belonging to the kth 

cluster 

N = total number of pixels 

K = total number of clusters 

vk = average value of kth cluster in the current iteration 

Xk = set of pixels assigned to cluster k  

Mk = the number of pixels belonging to the kth cluster 

Sk = standard deviation of the pixels in the kth cluster 

dkj = Euclidian distance between the kth and jth centroid 

 

4.2 Xie-Beni’s separation Index (XBI) 

The XB separation index (XBI) was proposed by Xie and Beni 

in 1991 (Xie and Beni, 1991; Yang amd Wu, 2001). The XBI 

is computed similarly to the DBI. Again, each pixel is first 



 

assigned to the nearest cluster centroid of the given 

chromosome according to Eq. (1). Then, the minimum 

distance dmin of all distances dk,j between two clusters of the 

chromosome is calculated, see Eq. (7). Finally, the XBI which 

expresses the ratio between the total variation and N times the 

minimum separation of the clusters, is computed, the inverse 

of which is the XBI, see Eq. (8).     
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4.3 K-Means Index (KMI) 

K-Means is a simple and common clustering algorithm which 

can also be used in te GA framework (see e. g. 

Bandyopadhyay and Maulik, 2002). Compared to the XBI the 

minimum separation is omitted from the computations, the rest 

is identical. Thus, KMI represents the total variation 

disregarding the distance between different clusters. KMI is 

computed according the Eq. (9) as follows:  

2
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5. GROUND TRUTH DATA 

For our research we used a multi-spectral IKONOS image. The 

image depicts Chandlers Ford in the U.K. and was taken on 

2000/08/25 with 4 meters pixel size and 11 bits per pixel (see 

Figure 1. (a), (b)). We selected a small test image with a total 

of about 15,000 pixels for our experiments. A higher 

resolution map served as a reference for obtaining ground truth 

information.  

In the test image, there are three object classes. They are 

farmland, grove, and irrigation canal, respectively, see also 

Figure 1(c)-(e). It should be noted that the farmland area in the 

left part of the test image is significantly darker than the 

farmland in the other parts and is spectrally closer to grove. 

Thus, we expect some mixture between farmland and grove in 

this area. Also, the irrigation canal visually has a certain 

 

Figure 1. (a) The original IKONOS image; (b) The test image; (c)-(e) Masks for the three classes : (c) farmland (81% of the total 

amount of pixels in the subset image); (d) grove (16%); (e) irrigation canal (3%). 



 

spectral similarity to grove; in addition it only covers a 

relatively small amount of the test image. It is for these aspects 

that we have selected the test image, as it presents a rather 

difficult case for classification. 

 

6. EXPERIMENTAL TESTS AND ANALYSIS OF 

RESULTS  

6.1 Criteria of evaluation 

In order to evaluate the different results we compared the 

ground truth data to the individual classification results. For 

this purpose we computed the error matrix (confusion matrix) 

and the well-known criteria producer’s accuracy or 

completeness (the number of pixels that are correctly assigned 

to a certain class divided by the total number of pixels of that 

class in the reference data), user’s accuracy or correctness (the 

number of pixels correctly assigned to a certain class divided 

by the total numbers of pixels automatically assigned to that 

class), the overall accuracy and the K-HAT statistics (see 

Lillesand and Kiefer, 2000 for a quantitative definition). 

 

6.2 Test description 

For GA algorithms used as classifiers there are basically seven 

parameters which influence the result. These are the maximum 

length of the chromosome, the way to encode the chromosome 

units (binary, real number and so on), the population size, the 

crossover type and probability, the mutation probability, and 

the employed fitness function (Pham and Karaboga, 2000). 

In our research a maximum chromosome length of Kmax=8 was 

chosen, which is well above the maximum number of clusters 

in the test image. As explained above, coding was done using 

positive integers. To simplify our investigations and in 

accordance with many of the investigations on GA, only 

one-point crossover operations were considered. The other 

four parameters were systematically varied in order to study 

their influence on the result. For selecting the actual parameter 

values we took advice from general GA references (e. g. Coley, 

1999). More specifically, the population size was set to 30, 60, 

and 90 chromosomes, respectively, the crossover percentage 

was defined as 40%, 60%, and 80%, and for the mutation 

probability we selected values of 0.05, 0.25, and 0.5. One set 

of parameters, namely a population size of 90 with a crossover 

percentage of 80% and a mutation probability of 0.05 was 

considered as the baseline set, against which the other 

parameters were varied. Iterations were terminated as soon as 

the best chromosome (the one with the largest index) did not 

change any more from one iteration to the next. In this way, 

the three presented indices, DBI, XBI, and KIM were 

investigated, resulting in a total of nine results of each index. 

 

7. RESULTS AND DISCUSSION 

Figure 2 displays the visual results with respect to the variation 

of population size. The colors indicate the different classes: 

light green stands for farmland, dark green for grove, and 

bright for irrigation canal. The first row (Figure 2 (a)-(c)) 

contains the DBI results, the second one (Figure 2 (d)-(f)) the 

XBI results, and the third one (Figure 2 (g)-(i)) the KMI results. 

In the left column the results for a population size of 30 are 

presented, in the centre for a size of 60, and to the right for a 

size of 90. The Figures 3 and 4 contain similar results for the 

variation of crossover percentage (the chosen values are 40%, 

60% and 80%) and mutation probability (0.05, 0.25 and 0.5).  

Tables 1 to 3 are structured in the same way and contain the 

numerical results of the study. For each case, the producer’s 

accuracy (PA), the user’s accuracy (UA) for both, farmland 

and grove, the overall accuracy (OA) and the K-HAT value are 

given. The PA and UA values for irrigation canal are not 

recorded, since in all cases they are very small. The reason is 

that (as mentioned above) the canal is very narrow, and is 

spectrally rather similar to grove. While this fact can be 

considered a shortcoming of the present study it can also be 

interpreted as a rather difficult case for unsupervised 

multi-spectral classification. It should be noted that the right 

columns of Figures 2 and 3 and the left column of Figure 4 and 

the related Tables entries show results of the same experiments. 

They have been duplicated for reasons of clarity.  



 

From the provided results the following conclusions can be 

drawn: 

- Most results only show two clusters, which can be 

associated with farmland and grove. The class irrigation canal 

is only visible in Figures 2(b), 3(a) and 4(b). The areas 

classified as irrigation canal in these cases are, however, 

wrong. 

- As far as a comparison of the different indices is concerned, 

the XBI clearly performs best. This is true when comparing the 

visual results to the reference image (Figure 1), and also when 

studying the numerical results. For XBI the overall accuracy 

lies consistently above 80% and reaches up to 89.7 % in the 

best case. Also the producer’s accuracy is very good; only the 

user’s accuracy for grove is a little low, because part of the 

farmland in the left part of the test image is classified as grove 

(see also discussion about ground truth). Furthermore, XBI is 

rather insensitive to the variation of parameters, which is 

obviously an additional advantage. 

- The DBI must be rated second. Acceptable results are 

obtained for the case depicted in Figure 2 (c), which is 

identical to the one shown in Figure 3(c) and the one shown in 

Figure 4(a), see above. For the other cases the quality of the 

results quickly degenerates. Thus, the DBI is much less robust 

than the XBI. Problems occur mainly for the user’s accuracy 

for grove, but the other indicators are also effected in a number 

of cases. 

 crossover percentage = 80%; mutation probability = 0.05 

 population size=30 population size=60 population size=90 

DBI 

XBI 

KMI 

 

Figure 2. Visual results for variation of population size 



 

- KMI yields unacceptable results. For the best case, the 

overall accuracy reaches only 65.3 %. There seems to be very 

little possibility to distinguish between farmland and grove. 

The user’s accuracy for grove is again the largest problem, but 

the other values are not much better. 

- In terms of computational resources, XBI also possesses 

advantages over DBI, because it can be computed with fewer 

steps (see also the equations given above). While it is true that 

KMI is even faster to compute, the results indicate that it is not 

a suitable index for the given task. 

- In all presented cases, also for the good XBI results, the 

K-HAT value is rather low. This indicates a number of errors 

of omission and commission, which can also be observed 

when investigating the full error matrices (due to space 

limitations, these matrices are not given in their complete form 

in this paper). 

- The results do not consistently depend on the input 

parameters. For DBI a larger population size, a larger 

crossover percentage and a smaller mutation probability seems 

to be advantageous, XBI is rather robust with respect to 

changing the parameters, and for KMI no definite conclusions 

should be drawn, since the results are too poor. 

 

In order to be able to better evaluate the overall quality of the 

results obtained with GA, we have also run the ISODATA 

algorithm to find clusters for our test image. We asked the  

 population size = 90; mutation probability = 0.05 

 crossover percentage = 40% crossover percentage = 60% crossover percentage = 80% 

DBI 

XBI 

KMI 

 
Figure 3. Visual results for variation of crossover percentage 

 



 

 population size = 90; crossover percentage = 80% 

 mutation probability = 0.05 mutation probability = 0.25 mutation probability = 0.5 

DBI 

XBI 

KMI 

 
Figure 4. Visual results for variation of mutation probability 

 

  

(a) (b) 

Figure 5. Visual results for ISODATA algorithm: (a) with two clusters, (b) with three clusters. 



 

 

algorithm to find two or three clusters, respectively. The 

rationale for this selection is that the user would probably ask 

for three clusters based on the ground truth knowledge (there 

are three different object classes on the ground), while most 

GA results only reported two clusters. Thus ISODATA was 

also run with two clusters to enable a better comparison.  

The results are shown in Figure 5(a) and (b) and in Tables 4 

and 5. It can be seen that the ISODATA result with two 

clusters is very similar to the best XBI result, while the one 

with three clusters is far worse. In the latter case similar 

problems occur as in some of the GA cases (see Figures 2(b), 

3(a) and 4(b)): in particular the irrigation canal poses a major 

obstacle to a correct classification, since much of the farmland 

in the upper right part of the test image is misclassified as 

irrigation canal. Also, the user’ accuracy for grove is 

unacceptably low. Thus, while the results of both methods are 

similar, GA does not need the desired number of classes as 

additional input. 

8. CONCLUSION 

In this research we have described how to employ genetic 

algorithms (GA) for unsupervised multi-spectral classification. 

GA provides a possibility to compute the number of clusters 

present in a scene from the image data by using a particular 

fitness function (index). We have tested three different indices, 

namely the Davies-Bouldin Index (DBI), the Xie-Beni, Index 

(XBI) and the K-Means Index (KMI). Experimental data were 

obtained by classifying a part of a multi-spectral IKONOS 

scene depicting three different classes, namely farmland, grove 

and irrigation canal with the different indices while varying a 

number of parameters of the GA. We have also compared our 

results to those obtainable by employing the well known 

ISODATA algorithm. We have based our evaluation on visual 

inspection of the results, the error matrix and the K-HAT 

statistics, computed from independent reference data. 

We could show that while all experiments somewhat suffer 

from the difficult test scene, the GA provides acceptable  

 crossover percentage = 80%; mutation probability = 0.05 

 population size=30 population size=60 population size=90 

 PA [%] UA [%]  PA [%] UA [%]  PA [%] UA [%] 

Farmland 49.5 91.3 Farmland 54.0 91.9 Farmland 97.7 90.4 

Grove 90.1 26.3 Grove 89.7 61.6 Grove 67.1 85.3 

OA = 54.7 % K-HAT = 10.2 % OA = 58.4 % K-HAT = 16.3 % OA = 89.8% K-HAT = 17.5 %

DBI 

(a) (b) (c) 

 PA [%] UA [%]  PA [%] UA [%]  PA [%] UA [%] 

Farmland 81.4 96.7 Farmland 87.0 95.6 Farmland 81.6 96.6 

Grove 95.2 48.6 Grove 94.0 57.9 Grove 95.0 48.9 

OA = 81.2% K-HAT = 21.2 % OA = 85.6 % K-HAT = 22.1 % OA = 81.4 % K-HAT = 21.3 %

XBI 

(d) (e) (f) 

 PA [%] UA [%]  PA [%] UA [%]  PA [%] UA [%] 

Farmland 67.9 86.4 Farmland 49.3 89.8 Farmland 41.6 85.4 

Grove 64.6 28.9 Grove 86.8 25.5 Grove 35.7 17.8 

OA = 65.3 % K-HAT = 8.2 % OA = 54.0% K-HAT = 9.2 % OA = 44.3 % K-HAT = 2.7 % 

KMI 

(g) (h) (i) 

Table 1: Num. results for variation of population size (PA: producer’s accuracy, UA: user’s accuracy, OA: for overall accuracy) 



 

 population size = 90; mutation probability = 0.05 

 crossover percentage = 40% crossover percentage = 60% crossover percentage = 80% 

 PA [%] UA [%]  PA [%] UA [%]  PA [%] UA [%] 

Farmland 38.3 88.5 Farmland 98.5 82.4 Farmland 97.7 90.4 

Grove 85.8 25.5 Grove 11.0 48.7 Grove 67.1 85.3 

OA = 45.6 % K-HAT = 8.4 % OA = 81.2 % K-HAT = 3.0 % OA = 89.8% K-HAT = 17.5 %

DBI 

(a) (b) (c) 

 PA [%] UA [%]  PA [%] UA [%]  PA [%] UA [%] 

Farmland 82.8 96.4 Farmland 84.1 96.3 Farmland 81.6 96.6 

Grove 94.8 50.6 Grove 94.8 52.6 Grove 95.0 48.9 

OA = 82.3% K-HAT = 21.5 % OA = 83.4 % K-HAT = 21.8 % OA = 81.4 % K-HAT = 21.3 %

XBI 

(d) (e) (f) 

 PA [%] UA [%]  PA [%] UA [%]  PA [%] UA [%] 

Farmland 56.9 91.5 Farmland 55.0 85.2 Farmland 41.6 85.4 

Grove 88.5 29.1 Grove 85.6 25.0 Grove 35.7 17.8 

OA = 60.4 % K-HAT = 11.8 % OA = 55.0% K-HAT = 9.2 % OA = 44.3 % K-HAT = 2.7 % 

KMI 

(g) (h) (i) 

Table 2: Num. results for variation of crossover percentage (PA: producer’s accuracy, UA: user’s accuracy, OA: overall accuracy) 

 

 population size = 90; crossover percentage = 80% 

 mutation probability = 0.05 mutation probability = 0.25 mutation probability = 0.5 

 PA [%] UA [%]  PA [%] UA [%]  PA [%] UA [%] 

Farmland 97.7 90.4 Farmland 53.6 92.0 Farmland 34.6 58.0 

Grove 67.1 85.3 Grove 90.1 61.0 Grove 54.0 12.6 

OA = 89.8 % K-HAT = 17.5 % OA = 58.1 % K-HAT = 16.2 % OA = 30.5% K-HAT = 14.7 %

DBI 

(a) (b) (c) 

 PA [%] UA [%]  PA [%] UA [%]  PA [%] UA [%] 

Farmland 81.6 96.6 Farmland 97.8 90.3 Farmland 86.3 95.9 

Grove 95.0 48.9 Grove 66.2 85.6 Grove 94.3 56.4 

OA = 81.4% K-HAT = 21.3 % OA = 89.7 % K-HAT = 17.2 % OA = 85.0 % K-HAT = 22.1 %

XBI 

(d) (e) (f) 

 PA [%] UA [%]  PA [%] UA [%]  PA [%] UA [%] 

Farmland 41.6 85.4 Farmland 46.2 89.0 Farmland 34.5 56.4 

Grove 35.7 17.8 Grove 53.8 24.3 Grove 53.6 13.6 

OA =44.3 % K-HAT = 2.7 % OA = 51.4% K-HAT = 8.1 % OA = 30.5 % K-HAT = 5.7 % 

KMI 

(g) (h) (i) 

Table 3: Num. results for variation of mutation probability (PA: producer’s accuracy, UA: user’s accuracy, OA: overall accuracy) 

 



 

 Farmland Grove Irrigation canal 

Farmland 81.8%  4.9%  53.7%  

Grove 18.2%  95.1%  46.3%  

C
la

ss
ifi

ca
tio

n 

Irrigation canal 0.0%  0.0% 0.0%  

 

Producer’s Accuracy User’s Accuracy 
Farmland = 81.8% Farmland = 96.5% 
Grove = 95.1% Grove = 49.4% 
Irrigation canal = 0.0% Irrigation canal = 0.0% 
  
Overall accuracy = 81.6% K-HAT = 21.3 % 
 

Table 4: Error matrix for ISODATA results, two clusters 
 
 

 Farmland Grove Irrigation canal 

Farmland 41.9%  5.3%  79.9%  

Grove 43.5%  91%  13%  

C
la

ss
ifi

ca
tio

n 

Irrigation canal 14.7%  3.7 % 7.2%  

 

Producer’s Accuracy User’s Accuracy 
Farmland = 41.9% Farmland = 91.2% 
Grove = 91% Grove = 29.7% 
Irrigation canal = 7.2% Irrigation canal = 1.7% 
  
Overall accuracy = 48.9% K-HAT = 10.8 % 
 

Table 5. Error matrix for ISODATA results, three clusters 
 
 

results for a number of cases. The XBI turned out to be the 

most accurate and by far the most robust index. The overall 

accuracy was consistently above 80 %, with the best values 

reaching 90 %. The DBI is much more sensitive to parameter 

tuning, and the KMI seems to be unsuitable for the use in 

unsupervised classification. The GA results are similar to those 

obtained with the ISODATA algorithm, if results with the 

same number of clusters are compared. However, whereas GA 

determines this number automatically, it nneds to pre-defined 

for ISODATA. Thus, GA algorithms seem to be more flexible 

and therefore advantageous to more traditional unsupervised 

classification techniques. 

In the future we plan to extend our study to process more and 

larger scenes in order to confirm the results found so far. We 

are also interested to experiment with different termination                 

 

conditions such as an absolute fitness level which needs to be 

reached and to study under which conditions our approach 

reaches the best solution. Finally, we want to integrate indices 

based on fuzzy theory into the investigations. 
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