KEY WORDS: satellite images, calibration, self calibration, mathematical model

ABSTRACT:

Satellite cameras are calibrated before launch in detail and in general, but it cannot be guaranteed that the geometry is not changing during launch and caused by thermal influence of the sun in the orbit. Modern satellite imaging systems are based on CCD-line sensors. Because of the required high sampling rate the length of used CCD-lines is limited. For reaching a sufficient swath width, some CCD-lines are combined to a longer virtual CCD-line. The images generated by the individual CCD-lines do overlap slightly and so they can be shifted in x- and y-direction in relation to a chosen reference image just based on tie points. For the alignment and difference in scale, control points are required. The resulting virtual image has only negligible errors in areas with very large difference in height caused by the difference in the location of the projection centers. Color images can be related to the joint panchromatic scenes just based on tie points. Pan-sharpened images may show only small color shifts in very mountainous areas and for moving objects.

The direct sensor orientation has to be calibrated based on control points. Discrepancies in horizontal shift can only be separated from attitude discrepancies with a good three-dimensional control point distribution. For such a calibration a program based on geometric reconstruction of the sensor orientation is required. The approximations by 3D-affine transformation or direct linear transformation (DLT) cannot be used. These methods do have also disadvantages for standard sensor orientation. The image orientation by geometric reconstruction can be improved by self calibration with additional parameters for the analysis and compensation of remaining systematic effects for example caused by a not linear CCD-line. The determined sensor geometry can be used for the generation of rational polynomial coefficients, describing the sensor geometry by relations of polynomials of the ground coordinates X, Y and Z.

1. INTRODUCTION

Very high resolution space cameras having a larger swath width are equipped with a combination of linear CCD-lines. The relation of the CCD-lines as well as their geometric linearity at least has to be verified after launch. The large acceleration during launch may change the exact position of the CCD-lines in the camera. In addition the location of the CCD-lines for multi-spectral images has to be known in relation to the panchromatic CCD-line combination. A calibration is possible by means of ground control points and overlapping scenes.

Modern high resolution space sensors are equipped with gyros, star sensors and a positioning system like GPS for getting a precise direct sensor orientation. This requires a system calibration of the imaging sensor in relation to the positioning elements. The determination of the boresight misalignment of aerial photogrammetric systems requires a flight at least in opposite direction; this is not possible for satellites. But the very flexible satellites do have the possibility of a free rotation, so the calibration can be supported with different viewing arrangements.

Linear array systems do have perspective geometry only in the direction of the array. By theory neighbored scene lines are independent, but the orientation is not changing very fast. For the classical satellites the view direction in relation to the orbit was nearly constant during imaging – this is different for the very flexible satellites. Images can be taken also by scanning against or across the movement in the orbit causing sometimes vibrations which have to be measured by means of the gyros. So a total separation of all effects is difficult, partially not possible. If effects cannot be separated, this is usually not influencing the
final use of the calibration, so for example an error in the focal length may be compensated by the flying height. The radiometric calibration can be based on artificial or natural test targets on the ground but also by means of sun light, it may change over the time. This will not be covered here like also the aspect of optimal focusing.

2. INNER ORIENTATION

The inner orientation describes the relation between the pixel position in the CCD-line to the field angle – the angle between the view direction and the direction where the pixel is pointing. Under optimal conditions of a single straight CCD-line located exactly in the focal plane and a system without distortion by the optics, the tangent of the field angle is identical to the relation of the distance from the principal position to the focal length. This will not be the case in reality. Due to the required characteristics, a combination of shorter CCD-lines is used instead of one longer CCD-line (figure 1). The corresponding offset in the orbit direction has to be determined and is respected by the generated synthetic image with a difference in time. The multispectral CCD-lines in most cases do have a lower resolution, so in some cases one solid CCD-line is used for this.

The different location of the single CCD-lines is causing a different view direction (figure 2). For a chosen reference ground height, the individual images can be matched without discrepancy, but if a scene has a stronger variation of the ground height, a mismatch may be caused. For example in the case of IRS-1C/1D the difference in the focal plane corresponds to 8.6km difference in the corresponding projection centers, so with a location having 450m height difference against the reference plane, a mismatch of 1 pixel will be caused. For QuickBird the displacement corresponds only to approximately 100m and so 1 pixel mismatch is caused by a height difference of 2.8km. The mismatch of the multispectral CCD-lines is larger, but because of the lower resolution it is not so obvious in pan-sharpened images. Only moving objects do show some effects. Because of the different imaging instant for color and panchromatic in pan-sharpened images the color of fast moving cars is shown behind the grey value image.

The CCD-lines should be exactly aligned or at least parallel and located in the image plane. In reality this is not possible. The imaging system may be calibrated before launch, but in any case an in-orbit calibration is required. Thermal influence may change the geometry also within the orbit, so from time to time the calibration has to be checked. The shift of the sub-images in and across orbit direction can be computed based on the overlapping part of the sub-images. A rotation in and across the image plane as well as a different distance from the projection center has to be determined by means of ground control and tie points.

The relation of the panchromatic to the multispectral CCD-lines belongs also to the inner orientation. It can be determined just with tie points, but for a general calibration the flying height above ground has to be respected. A transfer delay and integration (TDI= integration of the generated charge over some pixels, transfer corresponding to the forward motion speed – use of a small CCD-array instead of a CCD-line) has no influence – the lines after the first are compensating the shift by a different view direction.

The following are the formulas for calculating the offsets in the image plane:

Formula 1:

\[\Delta H_1 - H_2 = \frac{h_g \cdot \text{GSD}}{\Delta x} \]

Formula 2:

\[X = X' + P_{11} \times (X' - 14.) \text{ if } x > 14. \]
\[X = X' + P_{12} \times (X' + 14.) \text{ if } x < -14. \]
\[Y = Y' + P_{13} \times (X' - 14.) \text{ if } x > 14. \]
\[Y = Y' + P_{14} \times (X' + 14.) \text{ if } x < -14. \]

special additional parameters for calibration
An IRS-1C sub-image configuration of 3 complete scenes taken within 3 days with nadir angles of 18.7°, 0° and -20.6° has been used for calibration (Jacobsen 1997) (figure 6). For the calibration 4 special additional parameters have been introduced into the Hannover program BLASPO (formula 2). The constant values are corresponding to the sub-scene size [mm]. A rotation in the focal plane can be determined and respected with the parameters 13 and 14. A different distance from the projection centre as well as a rotation against the image plane is handled by the parameters 11 and 12. In general statistical checks of the chosen additional parameters have to be made to avoid too high correlations and to check if the parameters can be determined. In program BLASPO the individual correlation, the total correlation (value if the effect of one unknown can be fitted by the group of all other unknowns) and the Student test (with limit of 1.0) are used to avoid misinterpretations and over-parameterization. The residuals in the image and at the control points have to be analyzed for remaining systematic errors to allow an estimation of not respected systematic effects. For this the image residuals of all scenes and/or sub-scenes should be overlaid. A visual check is giving the first impression; this should be supported by covariance function and relative accuracy analysis.

\[C_x = \frac{E(Dx_i \cdot Dx_j)}{n \cdot SX^2} \]
formula 3: covariance

\[RSX = \sqrt{\frac{E((Dx_i - Dx_j)^2)}{2 \cdot n}} \]
formula 4: relative standard deviation

Both have to be calculated for distance groups – for example the longest available distance between points can be divided by 20 and the computation will be made separately for the 20 distance groups like in figure 5.

Fig. 5: upper part – covariance function
lower part – relative standard deviation
left – with strong systematic errors
right – without systematic errors

As shown in figure 5 above left, neighbored points are strongly correlated if the mathematical solution has not respected all systematic errors and the correlation will be smaller for larger distances between points. If the systematic errors have been respected (above right), the correlation is small and nearly independent upon the distance; only some noise can be seen. The relative standard deviation shows smaller values for neighbored points and is increasing with the distance between points if remaining systematic effects are available (lower left). Without remaining systematic effects, the relative standard deviation is homogenous for all distance groups (lower right).

The analysis of the sensor geometry has to be based on ground control points and it can be supported by tie points in overlapping scenes like shown in figure 6. One sub-scene is supporting the other. The arrangement should not be totally regular; if the scenes are taken with different view direction this will be the case automatically because of the dependency of the ground sampling distance (GSD, the distance of the projected pixel centers on the ground) from the nadir angle. In the case of a view to the side, like by IRS-1C, also the scene center lines are not parallel for locations not close to the equator.

A typical geometric problem is the linearity of the CCD-lines. The distance within the CCDs will not be influenced by the launch and usually is very precise, but it cannot be guaranteed that the CCD-line is totally straight. Results of CCD-line calibration are shown for MOMS02 and SPOT 5 (figure 7 and 8). This may also be influenced by systematic lens distortion which can be calibrated before launch, but may be influenced by the launch.
The user later will not see something about the individual effects of the inner orientation and the merging of the individual sub-images because not the original sub-images are distributed but synthetic images corrected by all mentioned effects.

3. EXTERIOR ORIENTATION

The focal length belongs to the interior orientation but caused by very small view angle it cannot be calibrated without information about the exterior orientation. This today can be determined precisely based on the combination of the satellite position by GPS or a similar system, gyros and star sensors. The gyros can determine the rotations, but they do have only good short time accuracy, so from time to time a support by star sensors is required. The relation between the imaging and the positioning system, named also boresight misalignment, must be calibrated. The offset between the GPS antenna and the camera can be based on the satellite geometry, so the main problem is the angular relation and the time synchronization. The angular relation is required with higher frequency to avoid a loss of accuracy caused by satellite vibration. Based on the satellite position a calibration of the focal length is simple. A complete exterior orientation can be based on control points, but like the inner orientation it can be supported by overlapping scenes taken with different view directions. A separation of the unknowns can be done by overlapping scenes taken with different view directions. The angular relation is required with higher frequency to avoid a loss of accuracy caused by satellite vibration. Based on the satellite position a calibration of the focal length is simple.

IKONOS, QuickBird and OrbView3 can scan the ground also in one adjustment has the advantage of correct accuracy and so the number of required ground control points can be reduced. IKONOS and QuickBird can determine the direct sensor orientation with a standard deviation in the range of 5m on the ground, but finding the optimal focus, geometric and radiometric calibration took approximately 6 month. Such accuracy requires a sufficient knowledge of the datum of the used national coordinate system but today with the change of the classical ground survey to satellite positioning the datum is usually known. In addition also the geoid undulation should be known at least approximately to allow a transformation of the geocentric GPS-coordinates to geoid heights and reverse. The published world wide geoids with an accuracy better than 2m are sufficient because the nadir angle of the satellite images is usually limited and an error in the height has only an influence to the horizontal position with \(\Delta h = h \Delta \nu \) where \(\nu \) is the incidence angle, the angle between the local vertical and the direction to the satellite.

The term accuracy today is causing sometimes confusion because in addition to the traditional standard deviation the US expressions CE90 and LE90 are used. There is a fixed relation between these values. CE is the circular error; that means the square root sum of the horizontal X and Y accuracy. 90 mean 90% probability level under the condition of normal distributed errors; while the standard deviation has 68% probability level. So to the standard deviation of the coordinate X (SX), also named 1 sigma, and CE90 there is the fixed relation of 2.3 or in relation to CE95 a relation of 2.8. For the vertical accuracy the expression LE90 is used having a relation of 1.65 to the vertical standard deviation or a factor 1.96 for LE95. Sometimes the standard deviation of the height is also named LE68.

The calibration requires a geometric reconstruction of the imaging geometry. Approximate solutions like the 3D-affine transformation, the direct linear transformation (DLT) or terrain dependent rational polynomial coefficients cannot be used even if they can lead to sufficient orientation accuracy with a higher number and 3D well distributed control points (Jacobsen et al 2005).

4. CONCLUSION

The inner and exterior or system calibration of high resolution optical satellites requires a correct mathematical model reconstructing the imaging geometry. This has to include additional parameters for the calibration of the optical sensor as well as the positioning sensors. The determination of all parameters in one adjustment has the advantage of correct accuracy estimation and the determination of the dependencies. On the other hand, the imaging geometry like distortion and alignment of the CCD-lines can be split of because of limited correlation. In general not only a single scene should be used, the common adjustment of a combination of overlapping scene improves the reliability and is reducing the number of required ground control points.

REFERENCES