Bücher, Buchkapitel, Dissertationen
-
(2021): Uncertainty Estimation for Dense Stereo Matching using Bayesian Deep Learning. In: Deutsche Geodätische Kommission Reihe C, Nr. 878, ISSN 0065-5325 (ebenfalls in: Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover, Nr. 378, ISSN 0174-1454) | Datei |
begutachtete Zeitschriftenartikel
-
(2023): Guiding Deep Learning with Expert Knowledge for Dense Stereo Matching. In: PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science.
DOI: 10.1007/s41064-023-00252-0 -
(2021): Aleatoric uncertainty estimation for dense stereo matching via CNN-based cost volume analysis. . ISPRS Journal of Photogrammetry and Remote Sensing (171), 63-75.
DOI: 10.1016/j.isprsjprs.2020.11.003
weitere Zeitschriftenartikel
-
(2022): MOBILISE: Mobilität zwischen Mensch und Technik. VDI/VDE Hannover Technik und Leben, 1/22, p. 7 Weitere Informationen
begutachtete Tagungsbeiträge
-
(2022): Joint Estimation of Depth and its Uncertainty from Stereo Images using Bayesian Deep Learning. In: ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences , V-2-2022, pp. 69-78.
DOI: 10.5194/isprs-annals-V-2-2022-69-2022 -
(2022): Cooperative image orientation considering dynamic objects. In: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences V-1-2022, pp. 169–177.
DOI: 10.5194/isprs-annals-V-1-2022-169-2022 -
(2021): Mixed Probability Models for Aleatoric Uncertainty Estimation in the Context of Dense Stereo Matching, ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, V-2-2021, 17-26
DOI: 10.5194/isprs-annals-V-2-2021-17-2021 -
(2020): Geometry-based regularisation for dense image matching via uncertainty-driven depth propagation. In: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences V-2-2020, 151–159.
DOI: 10.5194/isprs-annals-V-2-2020-151-2020 -
(2020): Uncertainty Estimation for End-To-End Learned Dense Stereo Matching via Probabilistic Deep Learning, ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, V-2-2020, 161-169
DOI: 10.5194/isprs-annals-V-2-2020-161-2020 -
(2019): CNN-based Cost Volume Analysis as Confidence Measure for Dense Matching, ICCV, 2nd Workshop on 3D Reconstruction in the Wild (3DRW2019), Proceedings. | Datei |
-
(2018): GPU-enhanced Multimodal Dense Matching. 2018 IEEE Nordic Circuits and Systems Conference (NORCAS): NORCHIP and International Symposium of System-on-Chip (SoC). | Datei | Weitere Informationen
DOI: 10.1109/NORCHIP.2018.8573526 -
(2018): Multimodal dense stereo matching. In: Bronx T., Bruhn A. (Eds.): Pattern recognition – 40th German Conference GCPR Stuttgart, LNCS 11269, Springer, 407-421. | Datei |
DOI: doi.org/10.1007/978-3-030-12939-2_28
weitere Tagungsbeiträge
-
(2022): DEEP LEARNING-BASED TRACKING OF MULTIPLE OBJECTS IN THE CONTEXT OF FARM ANIMAL ETHOLOGY, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B2-2022, 509–516
DOI: 10.5194/isprs-archives-XLIII-B2-2022-509-2022 -
(2021): Learning Multi-Modal Features for Dense Matching-Based Confidence Estimation, ISPRS Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B2-2021, 91-99
DOI: 10.5194/isprs-archives-XLIII-B2-2021-91-2021 -
(2018): Illumination Invariant Dense Image Matching based on Sparse Features. 38. Wissenschaftlich-Technische Jahrestagung der DGPF und PFGK18 Tagung in München, Band 27, 584-596. Weitere Informationen